URVIWREIRLY) vi--l‘u..-ll' - ol s-‘ll'U!.'ﬂJsl

PBO b H0YVY ud

-

WA108979

BFOSR.TR- 8! -0853

TECHNIQUES FOR
AUTOMATIC DEDU&',HON

" .
?

“

o3 T
v /})/
" &3'ﬁ o

A T

~
Yol £

P B
-

Final Report

October 1981

By: Robert E. Shostak, Senior Computer Scientist
P. Michael Melliar-Smith, Senior Computer Scientist]
Richard L. Schwartz, Computer Scientist 3

Computer Science Laboratory
Computer Science and Technology Division

Prepared for:

Air Force Ottice of scientific Research
Mathemastical and Information Sciences
Department of the Air Force

Bolling Air Force Base

Washington, D.C. 20332 ;
i
Attention: Captain William Price :
SRI Project 8752 (0 ‘e»
AFOSR Contract No. F40620-79-C-0099 ™ul-
G
?:_E"\\'f':
rﬂ-?{ua §
Ap'prmma for rv‘“’v" " ‘ !
dist:'ib.lt 3011 "\,'.-L.’\..‘..-..AA.L‘ Luwle
SR! International
333 Ravenswood Avenue :
Menlo Park, Caiifcrnia 94025 i

(415) 326-6200
Cable: SRI INTL MPK
TWX: 910-373-2046

O AT TR TR T A

oo SRR
X

.”

R .
UNCLASSIFIED

SECURITY CLASSIFICATION OF TriS PAGE (When Date Entereq) i
. 4 READ INSTRUCTIONS =

1. REPORT NUMBER 2. GOVYT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER ——

s / : s G o

AFOSR-TR- 81 -0853 | 4D Jros89y7

A, TITLE (and Subtitie) 8. TYPE OF REPORT & PERIOD COVERED

FINAL TECHNICAL REPORT .
July 1979-July 1981)
8. PERFORMING ORG, REPORT NUMBER

Techniques for Automatic Deduction

7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s) E

Robert E. Shostak _
P.M. Meliar-Smith F49620-79-C-0099

Richard L. Schwartz

& PE?FORMING QRGANI2ZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
mputer Science Laboratory AREA & WORK UNIT NUMBERS
SRI International 2304/A2 61102F — 3

333 Ravenswood Avenue, Menlo Park, CA 94025

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRT DATE
Directorate of Mathematical & Information Sciencds October 1981
Air Force Office of Scientific Research
Bolling AFB, Washington DC 20332

T4. MONITORING AGENCY NAME ¢ ADORGESS(I! ditferent ftom Controlling Ollice) 15, SECURITY CLASS (ol this report)
Unclassified

13. NUMBER OF PAGES
i01

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Ropon)

Approved for public releasc; distribution unlimited.

i

17. DISTRIBUTION STATEMENT (of the abatract entered in 3lock 20, il ditlerent {rom Repart)

TS

%
18. SUPPLEMENTARY NOTES 3
b1
< ;
19. KEY WORDS (Continue on reverse side il necessary «nd identify by block numbar) N »J
Simplification, verification, theorem proving, deduction, program correctness o1
Ko

v,

AN 20. ABSTRACT (Continue on reverse side I{ necessary end identily by block number)

—;ﬁThis report covers progress on a 2-year research effort toward the development
of new theorem-proving methods for program verification, and the empirical
investigation of these methods in actual verification systems. The research
conducted during the course of the project focused on methods for simplifying
formulas of the kind that arise freauently in the verification of prorvams.

The importance of simplification methods. as opposed to pure proof methods, was
pointed up by verification work conducted under a previous AFOSR conttract.
Perhaps thne most significant outcome of the proiect is the develonment of an_

DD 3R, 1473

g UNCLASSIFIED
I sECTRITY CLASSIFICATION OF THIS PAGE (When Dara Entered)

P TN TTI T W —— TU . Ty g el g aaene 0 e aenas gt ettt g

A

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Enrered)

20. (continued)

—experimental theorem prover that has been used extensively in the proof of
correctness of the design of a fault-tolerant onerating system developed under
NASA support. We believe that the technology embodied in t%is experimental

system could be successfully applied to the development of a production

verification system.

(S

.\\

J-// UNCLASSIFIED

SECURITY CLASSIFICATION OF TKIS PAGE(When Deta Entered)

b xSl
ke Al 0i0 aat i, ik LR bibaalid bl

g,:]

i

o eaatte i el Lo

DS

s g

e b inda i b dv ok s

kit

Gl TP P Fr

TR MR

AR

R Wl

TP I P T AT IE T AR

EL :7
3

TECHNIQUES FOR
AUTOMATIC DEDUCTION

Final Report

October 1981

By: Robert E. Shostak, Senior Computer Scientist
P. Michael Melliar-Smith, Senior Computer Scientist
Richard L. Schwartz, Computer Scientist

Computer Science L.aboratory
Computer Science and Technology Division

Prepared for:

Air Force Office of Sciuntitic Research
Mathematical and Information Sciences
Department of the Air Force

Bolling Air Force Base

Washington, D.C. 20332

Attention: Captain William Price

SRI Project 8752
AFOSR Contract No. F49620-79-C-0099

Ceemny £AWSE)

TR T

A At
oo b

[EOI SO
Trhic b
ppprovt”
Distrit: " .
Approved: MAT;NEE""'T‘Z%;;”“ el Troorwntion Division
Chief, b

Jack Goldberg, Director
Computer Science Laboratory

David H. Brandin, Vice President and Director
Computer Science and Technology Division

b o bt i Sl

1t et st dizibuele

E

)y

RN

[—

PP

T I T ;
R M i e e by, H
! LR fR R i e

T

1.

1.1 Relation to Other Computer Science Laboratory Projects

INTRODUCTION

1.2 Overview of Results

Table of Contents

g 4‘:‘:4 "‘"‘WWWW'"!""“" PR
. %

II. SIMPLIFYING INTERPRETED FORMULAS
1. Introduction
2. The Standard Procedure
3. The Modified Procedure
4, Complexity Issues
5. An Example
6., Phase 1 Alternative
III.AN EXPERIMENTAL PROVER
The I0 Model
The Replication Model
The Lemmas

The Proof Gmrmands with the required Instantiatiouns

IV. SOME COMPLETEMESS RESULTS FOR A CLASS OF INEQUALITY

PROVERS
1. Introduction
2. Definitions and Logical Basis
2.1 Axioms for total (linear) order:
2.2 Interpollation Axioms: I
2.3 Equality Axioms
2.4 Axioms for +
2.5 Additional Definitions
3. Completeness Results
3.1 RCF Completeness
3.2 RCF+ Completeness
APPENDIX Theorem Prover Listing

sitad bbbt . L, .

et antephsiogs ved -t d e aabitud s a4

PERF R HREY IR TR, T N

b S ot

et v

2
g
E:

Mkl b

T TR R NV R IR P T (P T ":}”"l;f‘mﬂgm\'-xwwh [PPSRt T

L sy ot i LA

T

SN B gy

T T

I INTRODUCTION

This is a final report covering progress on a 2-year research effort toward
the development of new theorem-proving methods for program verification, and
the empirical investigation of these methods in actual verification systems.
In the last several years, interest in verification technology has been
prompted by the tremendous cost of developing, debugging, and maintaining
software. The creation of new software products is frequently characterizad
by time and cost overruns, and insufficient modifiability and reliability.
Formal program verification offers a high payoff, though technically difficult
approach to the solution of these problems. Admittedly, methods for proving
the correctness of programs irn a mathematical way have not yet been developed
to the point of practicality for widespread everyday use. Nevertheless, much
progress has been made in just the last 2 or 3 years, and the use of these
techiques for verifying highly coritical software now seems both practical and
inevitable.

The experimental verification system we have developed underr the present
contract, in fact, is now successfully being used in the proof of correctness
of the design of a sophisticated, fault- tolerant operating system developed
under NASA supnort [Contract No. NAS1-15428]., We believe that the technology
embodied ir this experimental system is now nearly ready for transfer to a
production enviroument staffed Ly well-trained (but not necessaiily
research-oriented) users. Although more research will be necessary to develop
this system to the point of widespread use, we feel that the feasibility of
verification as a practical technique is finally at hand, and we are currently
seeking new Air Force support for the needed additional work.

The research conducted during the ccurse of the project focused on methods for
simplifying formulas of the kind that arise frequently in the verification of
programs. The importance of simplification methods, as opposed to pure proof
methods, was pointed up by verification work conducted under a previous AFOSR
contract. Much of the effort in the latter years of that contract wac
directed toward developing fast, automatic deduction mechanisms in a system
for verifiying JOCIT programs (RADC contract F30602-75-C-0042), Although the
work on fast decision procedures enabled us to prove automatically many of the
verification conditions and fragments of verification conditions generated in
the RADC effort, it by no means facilitated automatic proof of all of the

bbbl At kAR,

s i i i con st

it e e

o AL st i 0%

atadine - o el

ki

LS

(4o il

T s Fole i

S T T SRS AEGYY

formulas we encountered. The inadequacies were of two kinds: speed and
generality. The first of these difficulties was made manifest by formulas
whose Boolean structure produced a combinatorial explosion too large to be
handled in a reasonable amount of time. The second deficiéncy was made
apparent by large formulas that could be prover neither valid nor
unsstisfiable by the decision procedures. For such formulas (usually
verification conditions arising from improperly formulated inductive
invariants), these procedures leave the user with no clue as to the reason why
the given formula is not valid.

The work in developing simplification methods conducted under the current
project addresses both of these difficulties. The algorithms embodied in the
experimental system we implemented have been found to deal remarkably well
with the propositional structure that typically arises in verification
conditions. The method for simplifying interpreted formulas that was
developed under the contract has been found quite effective in reducing the
size of formulas whose validity could not be established, thus permitting the
u8er to understand, through examination of the 3implified formula, where the
problem lies.

Research conducted under the project produced a substantial body of results in
addition to those included in its original goals. Much of this additional
work focuses on simplification methods based on canonical term rewrite systems
investigated during the first year of the project. Additional work in the
second year includes the investigation of deductive techniques for quantified
formulas over the reals with inequalities.

The next few subsections describe the relation of this work to other Computer
Science Laboratory work, and give an overview of results. Later sectiuns,
most of which are extracted from academic papers, form the main body of the
report.

1.1. Relation to Other Computer Science Laboratory Projests

The Computer Science Laboratory at SRI has in the last several years conducted

numerous projects involving program verification. The interaction among these
various efforts has been of substantial mutual benefit. The current effort,
for example, has benefited from the strong motivation for deduction tools
provided by the more application~- oriented preojects. Conversely, our work in

VPRSI

camidhda .

IR PLYIOESON

i i o b st oo, s e

e gk WWHW‘”u“"'""w‘wﬁf’,"“RW“"’F"""“'"“"3""7"' " . . i L

TR

i R e

ey

the last 2 years has been, and continues to be, of utility in both our effort
to prove the correctness of the SIFT fault-tolerant operating system, and in a
project for the Rome Air Development Center to develop verifiers for several
versions of the JOVIAL programming language. Other application-oriented
projects have needed (and will need) Sophisticuted deductive tools for the
verification of security properties of system software.

Our work for Rome Air Development center has been in progress almost
continuously since 1975. Under contracts F30602-75-C-0042 and
F30602-76-C-0204 ("Rugged Programming Environment®, Phases RPE/1 and RPE/2),
we developed early versions of program verifiers for a subset of JOVIAL/J3 and
for JOCIT. A subsequent contract with RADC (F30602=78-C=0031) called for the
development of a programming environment for JOVIAL-J73/1 in which an Air
Force programmer can design, implement, debug, and prove correctness for
programs in this language. During the current reporting period, several
aspects of the project work have been applied to the development of the Rugged
Jovial Environment (RJE) program verification system. The RJE project is
concerned with the application of program verification techaniques %o

JOVIAL=-J73 software.

Mutually beneficial relationships have arisen also with several other i 3
government-supported projects in this laboratory. Among these are: :

- A Provably Secure Operating System (PSOS): The System, Its i
Applications, and Proofs. (SRI Project 4332, Contrast 1
DAABO3-75~C0399, for the U.S. Army. March 24, 1975 to February 11,

1977 plus subsequent work until August 1379).

gib e 1 |

i

~ Kernelized Secure Operating System (KSOS)—Design and Verification.
(SRI Project 6654, Contract MDA902-77-C-0333, Subcontract
SC-606079~EW, for Ford Aerospace., August 3, 1977 to April 30, 1978).

lite

BB ek -s ok mashs, - ISP (bl |

- Formal Transformation of Computer Programs. (SRI Project 4079,
Concract NOOQ14-75~C~0816 for the Office of Naval Research. March 3,

1975 to May 31, 1980).

- Formal Methods for Fault lolerance in Distributed Data Processing
Systems. (SRI Project T242, Contract DASG60-78-C-00u46 for BMD ATC.

February 27, 1978 to September 30, 1979).

- Investigution, Development, and Evaluation of Pe:rformance Proving
for Fault=tolerant Computers. (SRI Project 7821, Contract
NAS1-15528 for NASA-Langley. September 15, 1978 to September 15,

1981).

E;
[
E
4
E
LS
£
£
E
E
‘E%,
:
3
E
E

Lauee PN S il

- Mechanizing the Mathematics of Computer Program Analysis. (SRI
Project 8527, Grant MCS 79-04081 for the Naticral Science
Foundation. May 15, 1979 to May 15, 1982).

- Development of the Hierarchical Development Model (HDM). (SRI
Projeat 1015, Contraot N0O0039~79=-C=0463 for the Depurtamen: of tae
Navy. September 28, 1979 to September 30, 1980).

~ 0BJ=1, A Study in Executable Algsbraic Formal Specification. (SRI
Project 1350, Contract NOOO14-80-C-0296 for the Despartment of the
Navy. August 18, 1980 to August 17, 1981).

-~ Hierarchical Methodologies for Communication Protocol. (SRI Project
1879, Contract NBSONAAE3398 for the National Zureau of Standards.
August 21, 1980 to December 31, 1980).

- Towards an Editor and Interpreter for System Specificaticns. (SRI
Project 2153, Letter dated 6-25-80 for Philips Research
Laboratories. Septeuber 18, 1980 to September 1, 1981).

- PSOS Implementation Study -- Consulting Report. (SRI Project 2958,
Contract MDAOU~81-C=QU22 for U.S. Government. March 12, 1981 %o
September 15, 1982).

1.2 Overview of Results

The first year of the project was primarily concerned with-Task 1 of the
proposed work statement, i.e., the investigation of techniques for
simplification of nonlogical expressions. Emphasis was placed on elaborating
the method of interpreted implicants. The investigation was carried out in
collaboration with Professor Dornald Loveland, of Duke University. Preliminary
results of this study were presented at the Fifth Conference on Automated
Deduction held in July, 1980 at Les Arcs, France.

A substantial body of work on canonical term writing systems was also
undertaken during the first year, under partial support of the project.
Participating in this work were a number of visitors to SRI, including Gerard
Huet and Jean-Marie Hullot (of INRIA, France), and Paul Gloess (SRI
International Fellow). Four academic papers were produced, each touching on a
different aspect of the use of rewrite systems to simplify formulas. Three of
these papers ("Adding Dynamic Paramodulation to Rewrite Algorithms" (Gloess),
"Canonicai Forms and Unification" (Huet and Hullot), and "A Catalog of
Canonical Term Writing Systems" (Hullot)) were presented at the Automated
Deduction conference. "Equations of Rewrite Rules: A Survey" (Huet and Oppen)
appeared in the proceedings of the 1980 Conference on the Foundations of

SR AITRIE RO POP TIPS

1
? .

e

Rtalaiidaias o oo

T TR ATy e e Ty

i

i

TR

Computer Science held in Santa Barbara, Ca. Copies of these papers were
included in the first year's report.

The second year ¢f the project included work on all three tasks of the work
statement. Further improvements to th: method of interpreted implicauts vere
devised. A complete desoription of the method, inoluding these improvements,
was issued as a Ccmputer Science Laboratory technical report (CSL-117), and is
included as Section II of this report. Another facet of the second year's
work was the investigation of means for limivcd-expansion manipulation of
propositional expressions. Several experimental computer programs vere
written in the Interlisp language and used to develop algorithms to minimize
the combinatorial effect of case splitting in dealing with the propositional
struature of formulas. The heuristics developed in this study were then
incorporated within a full-blown experimental theorem prover, which has been
used intensively in a number of verification efforts (listed in the previous
subsection) in which the Computer Science Laboratory is now engaged. A
desaeription of this prover is given in Section III of this report, and the
eritical sections of the algorithms themselves, represented in Lisp, are
supplied in an appendix. An extensive example illustrating the use of this
system in the proof of the SIFT operating system has been provided by Michael
Melliar-Smith and Richard L. Schwartz.

In addition to the work specifically called for by the project, the second
year's activities included investigations in the related area of procedures
for deciding formulas involving general equalities. A modified resolution
procedure for this purpose was devised in collabcration with Prof. W. W.
Bledsoe and Mr. Robern Neveln, both of the University of Texas. Section IV of
this report describes the procedure in detail and gives completeness results.

“ diyxmmww»m‘rwww‘mﬁnu Ty

et ————

Al i big

AN

iAo ot pe ot - A Rt < A

s o b gt e S - e S B

1I. Simplifying Interprated F‘ormults1

D. W. Lovelandand R. E. Shostaks

|

T

Abstragt

A method is presented for converting a decision procedure for unquantified
formulas in an arbitrary first-order theory to a simplifier for such formulas.
Given a quantifier«free disjunccive normal form (d.n.f.) formula, the method
produces a simplest (according to a given criterion) d.n.f. equivalent from

among all formulas with atoma in the original formula. The method is

T AT IR A "“‘Flwy'?']"""“ﬂm"' T

predicated on techniques for minimizing purely boolean expressions in the

presence of "don't-care" conditions. The don't-cares are used to capture the 3

AR TR 3 1m0

semantics of the interpreted literals in the formula to be simplified.

i o Lo huzait

Two procedures are desoribed: a primitive version of the method that advances

ol i

the fundamental idea, and a more refined version intended for practical use,

3
B
%

Complexity issues are discussed, as is a nontrivial example illustrating the

utility of the method., The last section describes an alternative to the first

; phase of the refined version that is preferable in certain cases.

i i AR L
- 4 a

'an abbreviated version of this paper was presented at the S5th Conference on
Automated Deduction.

BT e SRV PR YU | PP

| 2Dept. of Comp. Sci.. Duke lniversity, Durham, NC 27706

3Computer Science Lab., SRI International, 333 Ravenswood, Menlo Park, CA
. 94025, (415) 326-6200 x2879; supported in part by AFOSR contract
- F49620-79-C-0099.

it

o

1. Introduction

The problem of aimplifying logical expressions was first addressed in the
early 19508 in the form of boolean minimization. The motivation at that timo
was to reduce_aa much as possible the number of components needed to realize a
given switching circuit. Minimization techniques were developed to operate
acocording to a variety of criteria, including the fewest litersls in a
sun-of-products or product-of-sums expression, the fewest tarms, or the fawest

terms and oceurrences of literals.

The problem of simplifying logical expressions has resurfaced in the last few
years in connection with program verification, synthesis, and allied concerns
in artificial intelligence. In these applications, the expressions to be
Simplified are no longer merely propositional; tiuey may contain interpreted
predicates or function symbols. Even the problem of defining useful
simplicity criteria for such formulas can be tricky, since the usual syntactic
measures are sometimes misleading. For example, the formula y2x V S5y<x+10

(where x and y are understood to range over positive integers) is much more

. concise than the equivalent (x=1 A y=1) V (%21 A y=2) V (%z2 A y=2) ,

even though the latter is likely to be mora useful in many theorem-proving
situations.

Ideally, one would like a general-purpose method for simplifying formulas in
arbitrary nonlogical theories with respect to arbitrary simplification
measures. Though such a method is clearly too much to hope for, the approach

described herein ip a step in the direction of this goal. Our method may be

viewed as a practical way of converting a decision procedure for unquantified

AT

LI ok i e AL

4 TR PSP S R T
C

+

AR T L

formulas in an arbitrary first-order theory to a simplifier for such formulas.
Given a quantifier-free formula in d.n.f., it produces a simplesﬁ (according
to any given reasonable criterion) d.n.f, equival;nt from among all formu;as
whose atoms occur in the original formula. By "reasonable" criterion, we mean
one according to which the deletion of a literal from a term or of a term from

a disjunction always produces a simpler formula.

Befcre describing the approach, we might point out that simplification can
often be accomplished merely by eliminating unsatisfiable disjuncts in a
disjunctive normal form. (Note, in particular, that this technique
necessarily reduces all unsatisfiable formulas to "false.") The elimination
of such disjuncts is not, however, sufficient to produce a simplest form for
nonval id formulas. The difficulty is illustrated by the following formula
from the theory of Presburger arithmetic with function symbols:

Fz (yf2) V (x<y A x+4y€0) V (%<1 A £(2)££(y)+1) .

While none of the disjuncts of F is unsatisfiable, F does have a much simpler

equivalent, namely
yéz V x<£1 .

Isolated consideration of the terms in the d.n.f. expression is thus
insufficient.

Cur method is presented in five parts. Section 2 describes and proves the

correctness of the standard procedure, a primitive version that advances the

fundamental idea. A much more efficient version, called the modified

procedure, is given and justified in Section 3. 3ection U gives a brief

analysis of the computational complexity of the two versions, and Section §
summarizes a nontrivial example that illustrates the utility of the modified

method. The last section presents an alternative to the first phase of the

v ol A e s b i

ORI VP =T PRP L E R R < TR DY

et el et il o i L a2t an

i

PEHEPLET

A TR T RS T TR

DRI

v

T T RS R

T R BRI T IR M T T R e et
. ! .-

modified procedure that is beneficial in certain cases,

2. The Standard Procedure

The procedure given in this section takes as input a quantifier-free d.n.f.
(¢.n.f.,) formula in a first-order theory and returns an ejuivalent d.n.f.
(c.n.f.) expression with the property that no other such expression with atoms
from the original formula is simpler with respect to a given reasonable (in
the sense given earlier) measure of simplicity. The procedure works with any
first-order theory for which the satisfiability of quantifier-free

conjunctions of literals can be tested.

One can view the method as a nonlogical counterpart of tne systematic
minimization techniques developed for purely propesition formulas., In fact,

the technique makes use of the method of prime implicants first described by

Quine and McCluskey [3,4].

Our treatment assumes that a d.n.f. expression is to be found. One can obtain

c.n.f. expressions using a dual method.

We begin with a brief review of Quine's method of prime implicants for purely

propositional expressions. A more detailed account is given in [1].

Defn. A term is a conjunction of Literals.
Defn. A term t1 subsumes a term t2 if each literal of t2 is also a

literal of ty.
Defn. An implicant of a formula F is a term that implies F.

Defn. A prime implicant of a formula F is a term that implies F and

subsumes no shorter term that implies F.

The fundamental interest of prime implicants is tha' any simplest d.n.f.

ol i Al < 20 Bt et

Lt i

i

it el 2

da v spttetlinciiiniel v ah e el

L3

It AL b RN B £ Al L Mt il B

jtctian ALY Vel Lol Rk 4 3 S S by & S b el

10

equivalent G for a propositional forwula F must be a disjunction of prime
implicants of F. To see this, suppose that some term t of G is not a prime
implicant of F. Because t implies F but is not a brime implicant, t must
subsume a shorter term t' that also implies F. The expression obtaineé from G
by replacing t with t' is still equivalent to F, contradicting the assumption

that G is simplest.

Severul methods can be used to determine the set of prime implican's of a

formula F. One such, called the method of iterated consensus [5,6] begins with

the set of terms in a d.n.f. form of F. The nontautological resolvents of
te-ms in the set are repeatedly formed and added to the set. At the same
time, subsuming terms are deleted. When no new terms can be added that do not

subsume existing terms, the set of prime implicants has been obtained.

Consider, for example, the formula F given by

F _prs V _pqrg V pars .

Resolving Ers and ;qrg gives rise to Eqr. Because Eqrg subsumes ;qr. the
former can be deleted. Next, by resolving ;rs with pqrs, one obtains qrs;
pars can thus be deleted. Because no more terms can be added or deleted, the

remaining terms, Ers. ;qr. and qrs, are the prime implicants of F,

Once the prime implicants of a formula have been found, a simplest d.n.f.
expression can be obtained by determining a simplest subset of prime
implicants whose disjunction is implied by the formula. Note that simplest
disjunctions need not be unique; frequently several different combinations of

prime implicants give rise to simplest equivalents. To discover these

combinations, it is useful to classify the prime implicants into three

5
dule 0

HRLRR s o g

T nsf-!m-'-m 'WW‘T?UHWW“FHHNFWWW“ IR TR .
g . L b : ¥ PR EE L (A1 R R S i

11

catagories:

- Core implicants are those that must appear in any such combination..
If a given implicant does not imply the disjunction of all other
implicants, it must be a member of the core,

- Absolutely eliminable implicants are those that imply the

disjunction of the core implicants, and so can be ignored.

- Eliminable implicants are those that are neither core nor absolutely
eliminable.

The various simplest equivalents differ only in their selection of eliminable

implicants.

The most straightforward method of finding these equivalents involves
constructing a table T whose rows are labeled by prime implicants and whose
columns are labeled by the terms in the perfectly developed d.n.f. (In the
perfectly developed d.n.f., each letter atom occurs (either signed or
unsigned) in each term of the formula to be simplified.) A '1' is placed at
T{t,u) if the prime implicant t is subsumed by term u, and a '0' otherwise.
The core implicants are easily identified as those subsumed by at least one
term that subsumes no other implicant; absolutely eliminable implicants are
those sﬁbsumed onl& by terms that subsume at least one cofe implicant. All

rows labeled by core and absolutely eliminable implicants are then canéeled

(deleted from the table), as well as all columns labeled by terms that subsume

core implicants. The subsets of remaining implicants sufficient to cover the
reraining columns are then enumerated exhaustively and a simplest one is

selected.

Our procedure for simplitying interpreted expressions depends on an

ks i SRR .

solh b i)

'
ok

e 1. 8o onadpadiotin il seabebilanspond vt -

hoadl wi!!ﬂl;ﬁrsla ke I dleis o vt

A

el

it ekt e 0

AT AT

"""”"«FWWW v, MWW“'

TP TR 177

R T R PR CI T T ST rr':ﬂj‘"%“mmri‘"“ b
L3 “

H

el aboration of the method just described that can handle so-called

"don!t-care" conditions. In the application of m?nimization techniques ﬁo
digital design it is sometimes useful to exploit situations in which certain
assignments to the variables of an expression to be simplified are not
actually realized. For such assigmments, the value of the simplified
expression can be arbitrary. As one might expect, greater simplification can
often be obtained if one relaxes the requirement that the simplified
expression be equivélent to the original, so as to necessitate equivalence

only for assigmments other than the don't-cares.

The treatment of don't-care conditions requires two slight modifications of

the basic meinod. First, for purposes qf generating prime implicants, the

d.n.f, form of the formula to be simplified is augmented by disjoining to it a

term for each don't-care conditinn. If, for eiample, p=T, q=F, r=T is a
don't-care input, the term ﬁar is added. Second, the terms in the perfectly

developed d.n.f. that imply don't-care conditions are omitted from the

prime-implicant matrix,

Suppose it is wished, for example, to simplify the formula F % p V qr with
respect.to don't-cére conditions {p=F, q=T, r=F} and {p=T, q=F, r=T}. We
first find the prime implicants of the augmented formula "

PV g V ;q; \"4 par. Using the method of iterated consensus. par canh be

el iminated immediately because it is subsumes p. Resolving p against ;qF. qF
is obtained. Since‘;q; subsumes dF. ;d; can now be eliminated. Resolving d;
against qr yields q, which permits the el imination of both qF and qr. We are

therefore left with the prime implicants p and q. The prime implicant table

will contain rows for p and q and columns for all the terms in the

§

N Vb i

s 1L e b

M,

13

perfectl y-developed d.n.f. for F (namely, pqr, pd;. p;r. ﬁa;. ;qr) other than
the don't-care term ﬁar. It is easy to verify that both p and q are core
implicants (q is subsumed by ;qr and p by the remaining terms), hence the

simplified form is just p V q.

T

Qur application of this method to the problem of simplifying interpreted
expressions is predicated on the use of don't-care conditions to encode the
semantics of the terms appearing in the expressions. The basic idea is to

treat the interpreted formula to be simplified as if it were purely

T T T T T

propositional (i.e., as.if interpreted terms were actually uninterpreted),
g except that all unsatisfiable (with respect to the interpreted semantics)
% conjunctions of literals with atoms occurring in the formula are tre-«ted as 3
% don't-cares. 3
: %
The procedure is easily understood in the context of a small example. ;
E Suppose, then, that the formula F to be simplified is just ?

X<y V (2>0 A x+2z-y>3) '

Sdno Db it

where all variocbles range over nonnegative integers.

i e i

If we let p, q, r denote the atoms x<y, 2z>0, and x+2z-y>3, respectively, F can

T BRI T T
¥

carse daliind

be written p V qr.

Now consider the eight possible assigmments of truth values to p, q, r: par, ;
pq;. ﬁar,.... ;E;. If each term were submitted to a refutation procedure for
quantifier-free Presburger arithmetic, it would be found that all assigmnments §
other than ;d? and bar are satisfiable., The question of simplifying F thus

becomes that of finding the simplest propositional equivalent of p V gr

nndhi

st

subject to the don't-care conditions EqF and ﬁar. Having solved this problem

b
:
L
E
E
%
i
#
¥

14

in the propositional example above, we may conclude that p V a, i.e., x<y V

2>0, ‘s a simplest equivalent. (Note, incidentally, that since p and q are

ai core .mplicants, the fact that p V q is simplest does not depend on the
E simpiisity measure.)
E

The standard method may be summarized as follows:

1. Let A be the set of atoms occurring in the formula F to be |
simplified, and let T be the set of terms representing the 2'“'
truth assignments to A. Using a refutation procedure for the theory
in question, determine the unsatisfisble subset U of T.

2. Using the method of prime implicants, find a simplest (with respect E
to the desired reasonable measure) formula that is
truth-functionally equivalent to F modulo the don't-care set U.

i

Our proof that the standard method does indeed produce a simplest semantic

1 equivalent for F among all formulas with atoms in A requires a few ;
E definitions.
g In the following, we will assume that F and F' are both quantifier-free

ks i)

formulas in a first-order theory Th, that as before, A is the set of atoms

i

occurring in F, and that the atoms of F' are contained in A.

il | SUCART

Defn. If S is a set of truth assignments to A, we say that F and F! .
- ; . are truth-functionally equivalent with respect to S if F & F!' é
f- evaluates to true for each truth assignment in S. i
3 Defn. The full term of a truth assignment m to A is a conjunction of ?
gs literals, one for each atom in A, such that each atom true in é
% m occurs positively, and each atom that is false in m occurs]

negatively.

i
e MR L Zats

Defn. A truth-assignment {0 A i3 Semantically consistent if the

corresponding full term is satisfiable in Th.

Claim. F and F', are equivalent in Th iff they are truth-functionally

equivalent with respect to the set of semantically consistent

12k i

Lk S

RO LA L LT AL G AR M 0)

Bt kbt b £ el

AL i 0 LA it S i KL S

-

15

truth assignments to A,

Pf. => Suppose F and F' are equivalent in Th. Let m be any
semantically consistent truth assignment., Since m is
semanticaily consistent, its corresponding full term {s true
in some model I of Th, Since each literal of F 5 F' is
assigned the same value by I as it is bym, F 3 F' must have
the same value in I as it does in m. Since F & F' is valid in
Th, it is true in I, hence in m.

<= Suppose F and F' are not equivalent in Th., Then F i F' must
be false in some model I of Th., Let m be the truth assignment
that gives each atom of A the value given it by I. I satisfies
the full term corresponding to m, so m is semantically
consistent. Since m gives each atom of A the same value as I,
F & F' is false iu m, hence F and F' are not
truth-functionally equivalent with respect to the set of
consistent truth assignments of A.

Q.E.D.
It follows as a corol’ .y . ‘“he claim that among all quantifier-free formulas
of Th with atoms in A, a simplest equivalent to F, according to any measure,
must be a simplest truth-functional equivalent to F with respect to the set of
semantically consistent truth assignments to A. The correctness of the
standard procedure follows immediately, once it is observgd that (1) the
don't-care procedure finds a simplest truth-functional equivalent with‘respect
to the complement (in the space of all assigmnments to A) of the given

don't-care set, and (ii) the complement of the don't-care set, in the standard

procedure, is the set of semantically consistent trith assignments.

3. The Modified Procedure

Because the problem solved embeds the satisfiability question for

propositional formulas, any version of the procedure requires (at least)

IRATAR

e i b

[PUMSPRI

b sddiadt s Clan

i
i
El
E
3
:

stoncate el _omliika

TP SR W . bt e
A it s Lpminattl o & ot aen Bt s

vootati b i

IR TR OOR, T | TR e

NI VT 2

LS s ke

i i

1“‘|rx:xq1qmmﬂzws n;,—;;pww”ww R
ol e R

T TN T 4 T

T N e T e T T ST B T — s e

oy

exponential time in input formula length in the worst case (based on
present-day knowiedge). This section details ref}nements of the standard

procedure, however, that improve performance greatly in many situations. . The
standard procedure may nevertheless be preferable when there is a substantial

number of multiple occurrences of atoms of F,

Qur measure of effort will be taken as the number of calls to the refutation
procedure. That thia is the best measure is arguatle since some refutation
procedures can be s0 quick as to have the boolean manipulation dominate the
cost. However, our methods are independent of the refutation procedure used
and most such piroceduires require a significant interval of time per call
{(which may be only a second, but is nevertheless significant when hundreds of
calls are made). Moreover, except for the iterated consensus (resolution)

section, total effort is proportional to the number of calls.

The greatest potential for performance gain follows from the requirement of
the standard procedure that all conjunctions to be processed must be evaluated
by the refutation procedure before serious boolean processing begins.
Although we improve the "worst-case" situation somewhat (worst-case wi;h
respect io the various chances that simplification may occur), we greatly

improve the cost ¢f processing a typical formula, especially when no

simplification does occur. We are left at least with the situation that high

cost is associated with definite gain.

For purposes of explanation, it is conveaient to consider the standard
procedure as consisting of two phases: in Phase 1, the unsatisfiable truth

assignments are determined and the prime implicants of the formula augmented

HEY PPy

o s A St el i it 0

TR T PR AR R Ty
¥ QS '

I X YRR iy 1A S e

B

by don't-care terms are generated; in Phase 2, the prime-implicarc table is
created and a simplest set of implicants implied by the original formula is

chosen., The improved procedure refines both of these phases,

The main improvemen' to Phase 1 turns upon the observation that it is
unnecessary to test all truth assigmments for satisfiability. In particular,
the assignments that subsume terms of the original formula need not be tested,
since these assigmments would be discarded in the iterated consensus procedure
anyway. In our earlier example, for instance, five of the eight assignments
(namel y pqr, pq?. ﬁar. ﬁa;. and ;qr) subsume either p or qr, leaving only

three (;d;. ;Er. ;a;) to be submitted to the refutation procedure.

Described in Section 5 is ancther refinement of Phase 1 that further lowers
the required number of calls to the procedure, but at the cost c¢f possibly

missing significant simplifications. |

The improvec Phase 2 procedure is equivalent tc the standard one, but is
substantially more erficient in most cases. It appears not to have been

considered for boolean minimization because "don't-c.re" conditions are

traditionally given rather than computed. _ : E

The procedure is derined using an auxiliary predicate P(X,Y), where X and Y

are sets of terms. Latting Y:{t1.t2...tk}. P(X,Y) is computed by enumerating

il ittt Rl e i e

all term: of the form
CA L1 A L?"' A Ly .

where C is the conjunction of all terms in X and each Li is the complement of

T U SRR PR TS

some literal in ti' The enumerated terms are tested one by one for

satisfiability. P returns "true" if one is found to be satisfiable, and

B Pl

TP
.

(gt

T AR R e

T I PR PN U NI NPTT SIS

returns "fal se" otherwise. The key property of P is that P(X,Y)=false iff

C oty VitV iVt

If for example, Xa{a,bc} and Yz{cde,gh}, the terms abe;E. abdzﬁ. abcEE. abcaﬁ.
lbc:E. abézi are enumerated., Note that the first two of these are
syntactically unsatisfiable, and so do not require cslls to the refutation
procedure, If it were found, for instance, that adeE is satisfiable, the

evaluation could terminate after this one call, returning "true."

The improved Phase 2 procedure is as follows., Let I be the s-t of prime
implicants computed by Phase 1, and let I' be obtained by deleting from I all
of its unsatisfiable members. (Computing I' from I thus requires applying the
refutation procedure to each member.) A modified prime-implicant table T, is
now constructed whose rows are labeled with members of I' and whose columns

are labeled by sets of terms. The colunns are created dynamically in the

following way:

1. Initialize the table by creating a column for each term in I', with
the singleton set of that term as label.

2. Fill in each new column as follows. If P(X,I'-X) evaluates to
false, where X is the set labeling the column to be filled in,
enter '%!' in each row position (indicating a cancelled column)., =«

Otherwise, for the row labeled by implicant u, enter '1' if u € X
and '0' if u @ X.

3. For each two cancelled columns with labels X1. Xa. create a new
colunn, if one ices not already exist, labeled by X, U xa.

4, Repeat Steps (2) and (3) until no new columns can be added.

5. Select prime implicants to define a simplest equivalent to F as in
the standard procedure--i.e., choose a simplest set S of prime
implicants such that for every uncancelled column X, there exists

L e o

b bl “ lia

bl ot

atttedlae o ez e b

e

T

;.
1
]
F
x
E

3

ARSI

e

il itk i) A

an 3 & S such that Th(s.X)n1.

We illustrate the modified procedure with the earlier example:

Fa2aVv b VvV de

where

a: yidz

b x<Ly

el x+y<0

da: x<1

e: 24y« .
Phase 1.

The truth assigrmments not subsuming terms in F are ;Bgd:. ZBEEe. ;533:. ;Edae.

;god:. abede, abode, abcde, and abcde., Of these nine, all but ;b;ae. IEAE..

and abcde are found by a refutation procedure to be unsatisfiable., The

iterated-consensus process is applied to [augmented by the six “don't-caras"

to obtain the set I = {a, be, d, e} of prime implicants.
Phase 2.

Each member of I is tested and found satisfiable, so I' = I. The modified
table Th is initialized with rows and columns labeled by members of I'. Steps
(2) and (3) of the Phase 2 procedure are now applied repeatedly to form the

table shown below.

20

B
o
ae
E
23
v

s, e

bl e

Bt e o) et foe.al

4 a 1 * Q * »*
be 0 * 0 » »
1 d 0 * 1 * * i
e 0 * 0 * *]
3 Justification for the table is summarized below: 4
E 1. Initialize, creating columns labeled {a}, {be), (4}, (e}]
; 2. Fill in columns:
;o Col unn{a} : ‘ i
S P({a}, {bc, d, e}:
E conjunction tested: abde satisfiable
L = true _ 4
N Fill in standard way !
E Column{bec}
P({be}, {a, d, e
: conjunction tested: bc—ase unsatisfiable
= false
L cancel column
.
”"'-uim;:fz:;g.,.*n } . e B o SR R i ~ Ralens =

21

Column{d):

P({d}, {a, bo, e}):

\ eonjunction tested: dabe satisfiable
z true

l Fill in standard way

Gl g
? T

Column {e):
P({a), {a, bo, d})
conjunctions tested: eabd unsatisfiable

eacd unsatisfiable
a2 fal se
cancel column

]
¥
£
2

il

3. Create new column labeled {be .;}

f 2. {Repeated). Fill in new columns:

Column {be, e}
P({bc, e}, {a, d})
conjunction tested: bcm unsatisfiable

. H L ‘,‘ .
b ittt il

= fal se

A

cancel column

i _ 3. (Repeated). No new columns

5. Core implicants a,d cover all uncanceled columns. =

SR]
d

The simpiit‘ied form is thus a vV d, i.e., F a3 yéz V x=1.‘

(Note that here only 19 calls to the refutation procedure were required, as

i AL b 2 and v stk ALt

against 32 for the standard procedure.)

fRlade e A

The correctness of the modified phase 2 procedure i3 established by the

following theorem.

PR r - o A

Theorem The standard and modified procedures yield the same minimal
formul ae.

YT T

Eee

Ser e s =

b catnic i

e L5 TSN AT Pt e I T
R AR, S TR

Because don't-care terms cannot label columns of t:ne table
created in the standard procedure, any row of that table
headed by an unsatisfiable impl icant must contain only zeroes,
and 80 cannot participate in an implicant selection. ygtting
Ts denote the table obtained by omitting such rows, it thus
suffices to show that T4 and Th (the table generated in the
modified procedure) yield the same implicant selecticns.

Note that the rows of both Ts and Th are labeled with the

members of the satisfiable subset I' of ;mplicants generated

in phase 1, We will assume without loss of generality that

these implicants are assigned to rows in the same order for
the two tables,

Let Ts' be the table obtained from Ts by removing any column v

for which there is another column v' with fewer 1's and such

that v has a 1 in every row position that v' does.
that it is enough to show that V(Ts') & V(T,), and

We claim

V(T,) € V(Tg), where V(T) denotes the set of uncanceled column
vectors of table T. To see this, note that a prime implicant
selection need only meet the ~ondition that every uncancelled
column vector have a 1 in some row labeled by a selected

impl icant. Any implicant selection that satisfies this

condition for T, must, from V(Ts') € V(T,), satisfy it for

Ts'. and hence for Ts. Conversely, any selection that

satisfies the condition for Ty must, from V(Tm) & V(Ty),
satisfy it for The

To show that V(Tm) = V(Ts). let v be an arbitrary coluné
vectcr in V(ﬂn) and suppose v occurs in T, with label X. Let t
be the conjunz:.ion of terms in X. Since P(X,I'-X) is true,
there exists a satisfiable conjunction C subsuming t with the
complement of (at least) one literal from each term in I'-X,
Let A,.....Ak be the atoms of F missing from C. The
conjunction C A (A, V A)) A (A V A A v A (A, V AY)
is 'satisfiable, so at least one term u in its disjunctive
expansion must be satisfiable,

Because u is a full term that

T B SR] GO T v PR

e s A

PAPRIETRHT R LT T

TRVTIRREY P

subsumes a conjunction of implicants of F, u must occur in the
perfectl y-developed d.n.f. of F. The vector labeled by u in

Tq, moreover, must be v, giving v-€ V(Tg) as required,

For V(TS.) S V(T,), let v be a column vector in V(Ts.): and
suppose v occurs in Ts' with label ¢t. Let X be the set of
implicants in I' that are subsumed by t. Because t is a full
term, each implicant of I' not in X must have a literal whose
complement occurs in t, Let C be the conjunction of all
literals in X, and for each implicant s not in X, at least one
literal of t whose complement occurs in s. C must be
satisfiable because t is. Since C is a conjunction tested by
P(X, I' - X), P(X, I' = X) must therefore be true, Thus if X
labels a column in Th. that column must be uncancelled, hence

v a column vector.

It suffices to show, then, that X does indeed label a column
of Th. So suppose not. Then there exists a proper subset Y
of X that labels an uncancelled column of qn with 1's in only
some of the rows in which v has 1's. Since V(T) = V(Tg),
this vector also occurs in Tg. But then v could not occur in

T '. giving a contradiction.

s
Q.E.D.

4, Complexity Issues

"Wnile it .is difficult to obtain quantitative measures of the improvemernt
. afforded by the modified procedure, some calculations can be made under.
| certain simplifying assumptions. CQur analysis will consider that the formula
3 ' F to beAsimplifie& has n terms, each with m literals, and that no atoms in F

have multiple occurrences.

For the standard procedure, exactly 2™ calls to the refutation procedure are

made in Phase 1 and, of course, none are made in Phase 2.

T T B L o A Rk W A
e ddeded "

i b

.

o bhm i

TP RN SRR L S

For the modified procedure, calls are made in both phases. In Phase 1, a call

is made for each truth assignment (to the mn atoms of F) that does not subsume
E. ‘ a term of F. Each truth assignment may be viewed as a choice. for each term,
of one of 2™ assigmments to the atoms of that term. Because all but one of

these 2™ assigrments are permissible, a total of (2™-1)" calls is made in

Phase 1.

é ; The number of calls made in Phase 2 depends on the set I of prime implicants
3 discovered in the first phase. To obtain a rough idea of Phase 2 behavior,
;

let us assume I contains p implicants, each with q literals, and that p<n,

q<m. (We have found this assumption to be valid in practice.)

Phase 2 first requires that each of the p implicants be tested for
satisfiability. The remainder of Phase 2 may require zero calls (if all prime
1 ‘; implicants are unsatisfiable). Assuming that p prime implicants are

satisfiable, we may need as few as p more calls (if all tested conjunctions

are satisfiable) or as many as (q+1)P-1 more calls (if all tested conjunctions

$ienild

are unsatisfiable). The lower bound holds because for each singleton set X, 3

4
E
£ P(X,I'-X) will return "true" after one call and Step 3 provides no new columns

beyond the p initiél columns. Thus, a total of p calls is made. The upper
bound holds because each conjunction tested contains for each of the p“prime
implicants either the prime implicant itself or the complement of one of the q

literals of the implicant. In the one unrealizable case, no prime implicant

e bt LT e a3 st

oceurs-in the conjunction. Using p<n, q<m, we have a worst-case bound of

(m+1)"-1, and a best-case bound of 2n.

It is worth noting that the total worst-case cost for the modified procedure

S adaln 1e2 200

TR TTI Ly e

‘
t
t
i

i
i

T

TR g

i o oy [T

dLoali it

-

1 AT

25

is almost always less than that }‘or the standard procedure ((2M=1)Pen+(me1)%a
versus 2™) for reasonable m and n. However, the primary value of the modified
procedure is that oftenm is small enough (typicaliy averaging about 1.5) so

that Phase 1 cost is moderate., Moreover, a general mix of candidate formulas

includes many that are not simplifiable and with the cost of Phase 2 close to

an.

5. An Example

This section gives a summary of a 1less trivial example. The example

illustrates that quite striking reductions can be obtained in innocent-looking

formulas.

Consider

F 2 yomax(2,2) V y>1+z2 V (y£0 A y<-1)
V (y20 A yéz) V y=0 V (z£1 A y£1) .

Phase 1: Use of modified procedure requires 3 calls, and resultis
in prime-implicant set:

{y>max(2,2) , y>1+2, y=0, y<-1, yéz, z#1, yé1} .

Phase 2: Modified procedure requires 63 calls.,

* Result: F 2 241 V y#£1 .

The standard procedure requires 128 calls.

To balance this example, we consider two formulas with similar structure to F,
but where little simplification occurs. The letters A, B, ... represent
semantically unrelated atoms.

F,5AV BV (CAD V(CAE VCVI(GAH

(which simplifies to F, 2 AV BV DV EV CV (G A H)

LT

B

o

E

T R

FpaAVBY (CAIDV (WAE VIV (GAH .

F1 produces 3 Phase 1 calls and 12 Phase 2 calls; F2 produces 27 phase 1

calls and 12 Phase 2 calls, The standard procedure requires 128 and 512 calls

, respectively.

6. Phase 1 Alternative

We conclpde with a description of an alternative phase 1 procedure. .:¢ need
for improvement relative to the procedures desci ibed earlier is strcag when
there are numerous multiliteral terms. Although the worst-casc cost is little
improved, we again are able %o reduce costs when few conjunctions of literals

of the given formula F are unsatisfiable.

The reducticn is obtained at the tradeoff of the guarantee of finding all
prime implicants ~- the alternative procedure detects only prime implicants
that are subterms of terms of F. This tradeoff is more favorable than it might
at first secem, since proper subterm implicants have the advantage of
guarantzeing simplification. Moreover, nonsubterm conjunctions of literals
with atoms in F are more rarely prime implicants, and are especially less
likely to appear in the final simplified formula. A nonsubterm impl icant must
be implied by some other implicant in order to appear in the final “

simplification. This rather strong constraint is automatically satisfied by

subterm implicants.

The alternative procedure is carried out ‘n two stages. First, iterated
consensus is applied to F as before, but without first computing and adding in

don't-care terms. Terms in the resulting ‘set of implicants that are not

i allande sl bbb f o e

it ki ik

Uy

o1 L i el

-

T T

T TP T T~ Fr i

27

subterms of terms in F are discarded. (Alternatively, but not necessarily .
equivalently, one could modify iterated consensus to disallow resoivents other
than subterms of terms in F, This would tend to r?duce the cost of the first
stage at the expense of the second stage, and might be preferable in ;ertgin

instances.)

In the second stage, each subterm implicant is tested for primeness. An
implicant t is tested by determining, in a manner described momentarily,
whether it has a subterm (i.e., a subterm with one fewer literal) that is also
an implicant. If net, t is prime, and so is included in the output of phase
1. Otherwise, t .s discarded in favor of its subterm implicants, which are
themselves tested for primeness. Proceeding depth-first, one has the option
of discontinuing subterm checking if a desirabie subterm implicant (such as a

unit) is determined.

The key aspect of the alternative procedure is the use of the P predicate
described earlier to determine quickly whether a given subterm of a subterm
implicant t is also an implicant. Letting 11'12"‘1k denote the literals of
t,and 1,,15...1, 4 the literals of the subterm in question, the determination
is made by computing P({11. 12""1k-1' Ik}. ? - {u}l), where ? is the'set of
terms of F and u is the term of F (or one of possibly several) of which t is a
subterm. As we will show P computes to false if and only if the subterm is an

implicant.

For illustration, consider the earlier example formula F 3 a V be V de.

where
a: y#£zuz
b: x <y
c: x+y<O0
d: x <1
e: fz £ fy + 1

i b e

RS

cds L el

oo oL EAb ! o

T N U

docn 120 o e

28

In this example, the iterated consensus stage has no effect, leaving the terms
of F as the set of implicants to be tested. The unit literal a has no

subterms and s0 is prime. It remains to test be and de:

P(be, (a,de}):

conjunction tested: bcad satisfiable

= true
P(BO. {ao de}):

conjunction tested: Sc;E satisfiable

: = true ;
% % be is prime j
L P(de, {a, bel): i
- i3
z conjunctions tested: deab unsatisfiable 7,3
_ I
deac unsatisfiable ‘;;
4 = false]
_ P(de, {a, be}): E
4 conjunction tested: deab satisfiable ;
; = true
: ' *+ d is a prime implicant, de and e are not.

We have, then, that a, bc, and d are prime implicants. The implicant E.is not

4 found ; however, e does not appear in the final simplified formula, which is

e

[REVETN R RO,

a V d. Note that five calls to the refutation procedure are made, as compared

bk s Lnd i

with nine calls by the modified procedure.

| r1rr o T

The use of the P predicate is justified in the following lemma.

Lemma Suppose u = 1112"'1k is a term of Fand t = 1112"‘lr' 2<r

£ k, is an implicant of F. Then 1, A ...l._, is also an f%
- A L
implicant of F iff P({l,lz...lr_1.lr}. F - {u}) = false. H

4
I3
3

Ry -

IR T e e

[

7T ST

29

PE. 2 If PC{11y.. 1 qulpds F = {ul) is true, then there is a
satisfiable conjunction 11"'1r-1YrIu(1)"'Iu(i)"‘lu(n);

where lu(i) is a literal in term u(i) of F, with term u

omitted from the indexing. But since 1, is a literal of u,

every term of F is falsified so].1 A 12 A oo A lr-? F does

not hold, contrary to assumption.

If 14 A ««o A l._, is not an implicant, there is an

interpretation of F verifying lyveeelp g but falsifying at
least one literal lu(i) of each term u(i) of F, But since t is

an implicant, so that].1 A oo A 12 F, lr must be falsified
in this interpretation. But then 11“'errIt(1)"'It(n) is

<=

satisfiable, contradicting P({l,,15...1. 4,1.)}, F = {ub)

fal se.
Q.E.D.

To obtain some general measure of the improvement afforded by the alternative
phase 1, we again count calls to the refutation decision procedure, and

consider formulas with n terms of m literals each, with every atom having a
unique occurrence in F.

“hen all conjunctions are satisfiable only one conjunction is tested for each

of the m subterms for a cost of nm. If all conjunctions are unsatisfiable up
to 2.2 subterms can be tested for each term, each checking mP-? conjunctions

for a total of n(Z"'—?:*)m“‘1 calls, (although in this case a depth-first search

would hold the cost to m".) A more useful observation is that finding one new

subterm prime implicant costs m™! calls.

We emphasize again that while gains over the modified phase 1 method can be

appreciable when a number of multiliteral terms exist and little

simplification og¢curs, this must be weighed against the possibility of missed

prime implicants of value, The alternative procedure also has less value when

vl B it e e L 1

-
gl

B——— L et

4
4
=4
E
;

vt S Tas e Ui St 2 U

L

ot st AL

t

Ak St

many multiple occur~ences of literals are found in the given formula. To
expedite this case, each conjunction should be checked for complementary

literals before submission to the decision procedure.

It should be clear that the procedure we have described is but one of a number
of alternatives. For large formulas one may check only small subterms (using
P(t,, ?) rather than P(t,, F . {u}), where t, is a subterm of t, when
necessary). If one wishes to consider all subterms with complementation of
literals introduced(so that e would be found as a prime implicant in our
example) then testing should be on conjunctions t1 each of which contains all

{ erals of the term t or their compliments. Resolution is then employed on
the conjunctions seen to be implicants. The worst-case cost of n(.2"'-‘l)m""1 is
only slightly worse than for subterm testing alone, but often all M.y

A
patterns need be tested. (However, many P(t,F - {t}) may test as few as one

conjunction.)

Truly low-cost maximal simplification using refutation decision procedures is
unl ikely. However, we believe this paper shows that, given the speed of the
best existing refutation procedures, simplification of expressions that occur

in practice is currently feasible.

7. REFERENCES

1. Bartee, T. C., Lebow, J. L., Reed, I. 5., Theory and Design of
Digital Machines, McGraw-Hill, New York (1962).

2. McCluskey, E. J., "Minimization of Boolean Functions," Bell System
Tech. Journal, Vol. 35, pp. 1417-1444 (Nov. 1956).

3. Quine, W. V., "The Problem of Simplifying Truth Functions," Am.
Math. Monthly, Vol. 59, pp. 521-531 (Oct. 1952).

2 a1t el R 1 % i R

TR T
I T T T

TATETERT

Dl TR ann

T R T T R R T AT T AP T (e =
.

31

4, Quine, W, V,, "On Cores and Prime Implicants of Truth Functions,"
Am. Math. Monthly, Vol. 66, pp. 755-760 (Nov. 1959).

5. Samson, E. W. and Mills, B. E., "Circuit Minimization: Algebra and
Algorithm for New Boolean Canonical Expressions," AFCRC-TR-56-110,
Cambridge, MAssachusetts (1954). ’

32

III AN EXPERIMENTAL PROVER

In the second year, much effort was devoted to the development of an
experimental theorem prover with the purpose of testing and refining the
theoretical results of the project in a practical setting. The resulting
verification system has been used and continues to be used extensively in a
NASA-supported effort to verify the correctness of a complex fault- tolerant
operating system. Participants in this effort include D. Hare, Dr. K. Levitt,
P. M. Melliar-Smith, and Dr. R. Schwartz, all of whom have been instrumental
in the development of the prover. The use of the system for this effort has
been so Ssuccessful that we are currentiy seeking support for the further
research and development needed to create a production version.

The system consists of a decision algorithm-based theorem-prover for typed
predicate calculus, together with a set of environment support functions.
Formulas in the typed theory are constructed from:

= Integer, real, rational and user-defined constants

= Integer, real, rational and user-defined variables

The propositional connectives IMPLIES, NOT, AND, OR, IFF

The first-order connectives FORALL, EXISTS

The three-placed IF construction

The relational operators EQUAL, LESSP, LESSEQP, GREATERP, GREATEREQP

The arithmstic operators PLUS, TIMES, MINUS, DIFFERENCE

Uninterpreted function symbols of INTEGER, RATIONAL, and
user-defined types

The theory also includes a definitional facility that permits user-created

conservative extensions.

One of the more interesting (and powerful) aspects of the theory over which
the prover operates is the provision for user-defined types. This facility
permits the abstract data type information associated with a program that is
to be verified to be carried down to the level of the verification conditions.
This information is passed to the theorem prover through explicit type
declarations for variables and function symbols occuring in the formulas to be
proved. The proof process includes a typechecking phase that verifies the
syntactic correctness of the formula. Type information is extracted during

gkl bt Lo

b Db e b i it otk it ot . Dkl

_ this phase, and incorporated into a TYPE MODULE that the theorem prover proper
é_ subsequently consults during the proof process.

g It should be noted that while the language we have desoribed is first-order

: (i.e., includes quantifiers), the decision procedures that underly the prover
3 operated exclusively on ground (unquantified) formulas. The prover
automatically skolemizes a quantified formula to obtain a ground formula, and
relies on the user to provide the necessary instantiations of the quantified
variables in the resulting Skolem form.

The prover has been found to be able to prove remarkably complex (with respeot
to syntactic measures) verification conditions on the order of several
seconds. The fast raesponse is due in large part to a considerable amount of
experimentation with the mechanism used to process the propositional
super-structure of the formula to be proved.

g

4
3

r
=

£
E
z
€
=
3
e
.

Perhaps the main lesson learned from this experimentation was that vast]
changes in speed performance could result from apparently minor "fine tuning"® %
of this mechanism. Because the modifications to which performance was
sensitive were often extremely slight, it is difficult to¢ draw conclusions
about how one should go about treating propositional structure in general.
Nevertheless, a number of ideas were developed that are of general interest.
First, it was determined that success in handling propositional structure
depends on a delicate balance between simplification and proof. "Proof"™, i
here, refers to an attempt to reduce a formula or subformula to either "true" 3
or "false"; failure of the attempt produces no other information. E

TR R P

s

s b b S

ta Lhbath 2,

i

E : Simplification, on the other hand, may result in reducing a formula that can

E be proved neither true nor false to an equivalent formula that is at least

?‘ syntactically more tractable. The utility of simplification as a subprocess i
[of proof is well established; it proved to be especially so in our case,

i because it often obviated the case-splitting that 1s more often than not
' responsible for combinatorial explosion in the reduction of propositional
§ structure. As an illustration, consider the following propositional

expression E:
: . E = (AND P (OR (NOT P)(NOT Q))(OR Q (AND (NOT P)(NOT Q)) R)
; (OR (NOT P) Q (NOT R)))

: We wish to reduce E to TRUE or FALSE. Ordinary case splitting, even when

Bl B viiccate ote Jposcleant. oo L PR P F NS PSPPI

preceded by recursive reduction of subexpressions to TRUE or FALSE when

AT I T

T] T

e

AR AP T T o PR P

4
rk.
&
F
3

e O YT

qu p b
4

possible, produces 1 x 2 x 3 x 3 = 18 cases (conjuncts) in the disjunotive
normal form. By recursively simplifying, however, E can be treated without
any case-splitting at all. In particular, simplification of the disjunct (OR
(NOT P)(NOT Q)) in the context of the unit literal P produces a second unit
literal (NOT Q). Simplification of the next disjunot in the context of the
two unit literals P and (NOT Q) produces a third unit literal

R. Simplification of the last diajunct then produces a contradiction, thus
reducing E to false.

Unfortunately, simplification is much more time consuming than proof, because,
as illustrated in our example, the results of each simplification must be
repaatedly applied to obtain other simplifications. We found that just the
right balance had to be struck between simplification and proof in the
internal structure of the propositional reduction mechanism to cbtain the

benefits of simplification without paying too dearly for the additional
analysis it requires.

A second idea developed from our experimentation is the utility of the
"FAST.PROVE" strategy. FAST.PROVE is a subalgorithm of our propositional
manipulator that attempts to reduce a formula (or subformula) without
permitting any case-splitting at all. Although FAST.PROVE is, of course,
incomplete, it was found to be quite effective as a kind of preprocessor; a
given formula would be subjected to FAST.PROVE at each level of its tree
structure before any case splitting would be undertaken at all. Once again,
it was discovered that a delicate balance had to be maintained in order not to
waste too much time in the case where the FAST.PROVE component was not
successful. As in the case of simplification, the criticality of this balance
is due to the recursive structure of the prover as a whole, which greatly
magnifies the effect, for better or worse, of any computation that is carried
out at each level of the recursion.

The remainder of this section illustrates the operation of the theorem prover
on some examples. The first series of examples involve simple mathematical
identities, and are included to exemplify operation of the prover. The second
series i3 extracted from the design proof of the SIFT operating system, and
was kindly furnished by Melliar-Smith and Schwartz. A partial listing of the
propositional simplifier portion of the prover is supplied in an appendix for
the benefit of those interested in the details of its operation. In the

e e st e Db e e i e s ot et st e b TR :

L wia ekl o

o3 i it s,

i
E
i
E.
1A
£
g
&
£
5

y

BT TS T L S
5

g s

35

following, annotationa in bracketa are not part of the user-machine dialogue,
but were inserted after the fact for the purposes of explanation. Lines
headed by numbers show commands issued by the user.

2_DSV(NUMBER X)
3_DSV(NUMBER Y)
4_DSV(NUMBER 2)

{In the three DSV (Declare Symbol Variable) commands above, the user declsres
X, ¥, and Z to be numbers (i.e., reals)]

5_DD(NUMBER MAX(X Y)(IF (LESSP X Y) Y X))

(This Declare Definition command defines the function MAX that takes two
numbers as arguments and returns a number. Note that the IF conatruct that
provides the definition defines MAX in the usual way.l]

6_DF(MAX.COMMUTE (EQUAL (MAX X Y)(MAX Y X)))

{This Declare Formula command associates the name MAX.COMMUTE with the given
formula. The system typechecks the formula, and would issue an error message

if it were found to be ill-formed.]
T_PR(MRX.COHHUTE)

602 conses

.7 seconds

Proved

[{The user now invokes the prover on the formula MAX.COMMUTE. After .7 CPU

sSeconds, the brovor returns Proved, and indicates the number LISP conses

required by the proof.]

8_DF(MAX.ASSOC (EQUAL (MAX X (MAX Y Z))(MAX (MAX X Y) 2)))
9_PR(MAX,ASSOC)

32343 conses

26,05 seconds

Proved

[The IF structure in the definition of MAX produces a great deal of
propositional case-splitting in the proaf of this formula, acoounting for the
formidable difference in proof times between MAX.COMMUTE and MAX.ASSOC.]

KRR | A
odedbetlidabs bt i o

st oy

b el

o b

DoLiBboa . al

ahio)

RPN

10_DD(NUMBER ABS(X)(IF (LESSP X 0) (MINUS X) X))
[The function ABS is now defined in the usual way.]

11_DF(FORALL.EXISTS (FORALL X (EXISTS Y (LESSEQP X Y))))
12_PR(FORALL .EXISTS)
Want instance for FORALL.EXISTS? Y
Y/ (ABS X)
e — Proving——we—ceacw-
305 conses
.25 seconds
Proved

[The system asks for an instantiation of the existentially quantified variable
Y. The user types in the instance term (ABS X). The instance is typechecked
by the system and substituted for the variable Y in the Skolem form of the
formula to be proved. The resulting ground formula is then proved by the

b v

underlying decision procedure.]

i
{
|

H
&
B

We now give as an example of the use of this system, the proof of
the correspondance betﬁeen the two most abstract levels in the design of the
SIFT system [Sift:Agard]. This proof aims to demonstrate the validity of the
design of SIFT by

- constructing a very abstract model of SIFT, simple enough to be
evidently what is required by the users of the system. This
.descripticn, in conventional mathematical notation, is simple enough
to fit onto one page

~ developing a hieirarchy of models of increasing complexity,
culminating in the imperative Pascal program that implements the
_ SIFT executive

~ demonstrating that each of the axioms of each of these models can be
proven as a theorem from the axioms of the model below it, though in
many cases the axioms are identical and the 'proof! is trivial.

We include here the complete definiiions of the most abstract model of
SIFT, the IO Model, and of the next model of the SIFT hieirach}. the
Replication Model. Also included are the set of lemmas, and the proofs of the
lemmas, leading upto the proofs of the two most interesting axioms of the I0
Model. Thses two axioms are the axioms stating that SIFT tasks get the
correct results both when they are scheduled to execute and also when they are
dormant. The proofs are, in effect, the proofs of the validity of majority

voting to ensure correct operation of SIFT even in the presence of faults.

It is important to note that thié example is a demonstration of the use of
the system ON A REAL APPLICATION. Real applications turn out to be much
bigger than the examples on which theorem provers are normally tested. Not
only must the system accomodate models containing hundreds of axioms and
lemmas but also the individual formulas can become very large. The more
detailed levels of SIFT, where the theorem prover has also been successful,

are yet more complex than the example we give here.

LN P TR SR AT

st L L

TR Y

Ll i St B g o LT

Tl e XL SRR TR S L

Eacii. atiahaht

(IEF
(IEF
(IEF
(IEF

(DTV
(DTV

(DST
(DST

(DST
(Dsv

The IO Model

INTEGER. STP) {These commands read into the
SEQ.STP) system previously defined sets
SETS.AXIOMS) of axioms}

PAIROF.STP)

TYPE1) {Type variable declatations}
TYPE2)

REALTIME INTEGER) {Subtype declarations}
SUBFRAMETIME INTEGER)

INTERVAL (PAIR.OF SUBFRAMETIME SUBFRAMETIME))
INTERVAL INTERVAL1) {A Varaible declaration}

(DD SUBFRAMETIME BEGIN(INTERVAL1) (FIRST INTERVAL1))
(DD SUBFRAMETIME END(INTERVAL1) (SECOND INTERVAL1))

{Declarations of Definitions}

(DD TYPE1 VALUE (PAIR1) (FIRST PAIR1))
(DD TYPE2 SQURCE (PAIR1) (SECOND PAIR1))

(DT FUNCTION.TYPE) ' {Declaration of an

uninterpreted typel

(DT SET.OF (TYPE1))

(DST
(DSV

ITERATION INTEGER)
ITERATION I)

(DD ITERATION INCR(I) (IPLUS 1 I))

(DT DATAVAL)

(DST

DATA (SEQ DATAVAL))

(QUOTE "WAS (DT DATA)")
(DT PROC)
(DT TASK)

(DSV
(DSV

(DS TASK GLOBAL,EXEC)

TASK K)
TASK L)
{Declaration of a constant}

(DS TASK CLOCK)
(DS DATA BOTTOM1 (TASK))

(DSV
(DSV
(DSV
(DSV
(DSV
(DSV
(DSV
(DSV

(DSV

(DSV

-

ITERATION J)

SUBFRAMETIME T)

SUBFRAMETIME TT)

INTERVAL II)

PROC P)

PROC QQ)

DATA V)

(PAIR.OF DATA TASK)

v.T)

{SET.OF (PAIR.OF DATA TASK))
V. INPUTS)

(SET.OF (PAIR.OF DATA PROC))
V.BAG)

T Db 3t S
cibp it] e sbiid o 2 il il e

$und b

e Wi | 45 ekt b

etit s bl

bt sl

i

et kBl cabtel i ¥ s

Ml bl i e sk

TR

e Ly

.

T T
“ Tl

K. . l VL BARERE I X vy e T

(DS
(DS

REALTIME EPSILON)
REALTIME LAMBDA)

(DSV SUBFRAMETIME T1)
(DSV SUBFRAMETIME T2)

(DS
(DS
(DS
(DS
(DS

INTERVAL OF (ITERATION TASK))

INTERVAL DW.OF (ITERATION TASK))

INTERVAL DW.FOR.TO,OF (TASK ITERATION TASK))
ITERATION TO.OF (TASK ITERATION TASK))

TASK ERROR.REPORTER (PROC))

(DSV SUBFRAMETIME T.SUB)

(DD
(DD

(DS
(DS

(DS

(DS

(D8
(DS

(DS

(DS
(DS
(DS

(DS
(DS
(DS
(DS

(DS
(DS
(DS
(DS
(DS

(DS
(DS
(DS
(D8

SUBFRAMETIME SUB.INCR (T.SUB) (PLUS T.SUB 1))
SUBFRAMETIME SUB.DECR (T.SUB) (DIFFERENCE T.SUB 1))

TASK IC.ERROR.REPORTER (PROC))
(SET.QF PROC)

SAFE

(SUBFRAMETIME))

(SET.QOF PROC)

SAFE.FOR

(INTERVAL))

(SET.OF PROC)

CONFIGURATION

(DATA))

BOOL TASK.SAFE (TASK ITERATION))
(SET.OF PROC)

POLL.FOR.OF

(ITERATION TASK))

(SET.OF DATA)

ON

(TASK ITERATION PROC))

DATA ON.IN (TASK ITERATION PROC PROC))
DATA IN (TASK ITERATION PROC))
(SET.OF DATA)

RESULT

(TASK ITERATION))

BOOL IC (TASK))

BOOL ON.DURING (TASK ITERATION))

BOOL SSF (TASK TASK))

(SET.OF TASK)

INPUTS

(TASK))

DATA APPLY (FUNCTION.TYPE (SET.OF (PAIR.OF DATA TASK))))
FUNCTION.TYPE FUNCTION (TASK))

REALTIME REAL.TIME (SUBFRAMETIME))

BOOL REPORTS (PROC PROC ITERATION TASK))
DATA REPORTVAL (PROC PROC ITERATION TASK))

BOOL ON,DURING (TASK ITERATION))
ITERATION TO.OF (TASK ITERATION TASK))
BOOL TASK.SAFE (TASK ITERATION))
(SET.OF DATA)

{Declaration of Functions}

Y N L S AV

4

i RESULT

3 (TASK ITERATION))

- (DSV (PAIR,OF DATA PROC)
: V.P)

(DS BOOL .C.TASK,.SAFE (TASK ITERATION))
(DS BOOL IC.TASK.SAFE (TASK ITERATION))
(DS TYPE1- SELECT ((SET.OF TYPE1)))

(DA IO.A1.1 (LESSP (SUB.INCR (BEGIN (OF I K)))
(END (OF I K))))

gob 4 oidl gt

(DA I0.A1.2 (LESSEQP (END (OF I K))
(BEGIN (OF (INCR I)

TP T *!‘HﬁhWZW ERLE ey BUTTERRE T

K)))) S
] (DA I0.A1.3 (IMPLIES (SSF L K) 3
: (EQUAL (SUB.INCR (BEGIN (OF I K))) :
1 (END (OF (TO.OF L I K) E
] | LM e

(DA I0.A3 (IMPLIES (AND (IC K)
(IC.TASK.SAFE K I))
(EQUAL (CARD (RESULT K I))
1))

(DA I0.A4 (IMPLIES (AND (IC K)
(MEMBER (SOURCE V.T)
' (INPUTS K))
(SINGLETON V,INPUTS V.T))
(AND (EQUAL (CARD (INPUTS K))]
’ 1)
t (IMPLIES (MEMBER L (INPUTS K)) E
: (EQUAL 1 :
(CARD (POLL.FOR.OF (TO.OF L I K) ;
LN» i
(EQUAL (VALUE V.T) i
(APPLY (FUNCiION K) -
V. INPUTS))))) i

Al 10 KIS T S, - Rt TUET
Kot ot il s o s

i ikl

F . (DA I0.A5 (IMPLIES (AND (MEMBER L (INPUTS K))
4 (ON.DURING K I)
(TASK.SAFE K I)
(NOT (ON,DURING L (TO.OF L I K))))
~ (AND (SINGLETON (RESULT L (TO.OF L I K))
(BOTTOM1 L))
(TASK.SAFE L (TO.OF L I K)))))]

$ (DA I0.A6 (IMPLIES (AND (LESSP T2 T1)]
(FORALL I (IMPLIES (LESSEQP ;
(END (OF I (CLOCK)))
T1)

il

ARG bn o 4

41

(TASK.SAFE (CLOCK)
IODDY

(AND (LESSP (DIFFERENCE (TIMES (DIFFERENCE T1 T2)
(DIFFERENCE 1 (LAMBDA)))

(EPSILON))
(DIFFERENCE (REAL.TIME T1)
(REAL.TIME T2)))

(LESSP (DIFFERENCE (REAL.TIME T1)
(REAL.TIME T2))

Latd i 1y = Sl

PO NP TP

(PLUS (TIMES (DIFFERENCE T1 T2) E
(PLUS 1 (LAMBDA))) g

(EPSILON)))) 3

(DS (SET.OF (PAIR.OF DATA TASK)) V.INPUTS.A2 (ITERATION TASK))
(DA I0.A2A
(IFF (AND (MEMBER (SOURCE V.T)

(INPUTS K)) E
(MEMBER (VALUE V.T) =

(RESULT (SOURCE V.T)
(TO.OF (SOURCE V.T)

IK)))
(MEMBER V.T (V.INPUTS.A2 I K))))

& Y R - R T 7

(DA I0.A2
(IMPLIES (AND (ON.DURING K I)
(TASK.SAFE K I)
(FORALL L
(IMPLIES (MEMBER L (INPUTS K))
(EQUAL (CARD (RESULT L

- AEVRIEL ORI IR JARATTIY | (H

(TO.OF L I K)
))

, MmN
! (SINGLETON (RESULT K I)
(APPLY (FUNCTION K) (V.INPUTS.A2 I K)))))

T Y TRV e TR

T T T T Y

3

R DL Al B

Bciid

P e ST g e e
.

The Replication Model

(IEF INTEGER.STP)
(IEF SEQ.STP)
(IEF SETS.AXIOMS)
(IEF PAIROF.STP)

(DTV TYPE2)
(DTV TYPE1)
(DST REALTIME INTEGER)

(DST SUBFRAMETIME INTEGER)
(DST INTERVAL (PAIR.OF SUBFRAMETIME SUBFRAMETIME))
(DSV INTERVAL INTERVAL1)

(DD SUBFRAMETIME BEGIN(INTERVAL1) (FIRST INITERVAL1))
(DD SUBFRAMETIME END(INTERVAL1) (SECOND INTERVAL1))
(QUOTE (DS SUBFRAMETIME BEGIN(INTERVAL)))

(QUOTE (DS SUBFRAMETIME END(INTERVAL)))

(DD TYPE1 VALUE (PAIR1) (FIRST PAIR1))
(DD TYPE2 SOURCE (PAIR1) (SECOND PAIR1))

(IEF MAJORITY.STP)

(DT FUNCTION.TYPE)
(DST ITERATION INTEGER)
(DT DATAVAL)

(DS DATAVAL BOTTOMD)
(DSV DATAVAL D1)
(DA BOTTOM.EQUALITY
(EQUAL (BOTTOM D1) (BOTTOMD)))

(DT TASK)

(DSV TASK K)

(DSV TASK L)

(DS NAT RESULT.SIZE(TASK))

(DST DATA (SEQ DATAVAL))
(DSV DATA V)
(DSV DATA V1)
(DS DATA BOTTOM1 (TASK))
(DA DATA.BOTTOM
(IMPLIES
(AND
(LESSEQP 1 Y)
(LESSEQP Y (RESULT.SIZE K)))
(EQUAL (SEQ.ELEM (BOTTOM1 K) Y) (BOTTOMD))))
(DA DATA.EQUALITY
(IFF
(EQUAL V V1)

RSP - thop 1 AR TR 3¢

QI B VIR P it AL e MY 1 7

Y RS N 1114 Y ATRORL TR

TR 7 I R TT 1

AR i il T TR
. J

(FORALL Y
(IMPLIES
(AND
(EQUAL (SEQ.LENGTH V) (SEQ.LENGTH V1))
(LESSEQP 1 Y)
(LESSEQP Y (SEQ.LENGTH V)))
(EQUAL (SEQ.ELEM V Y) (SEQ.ELEM V1 Y))))))

(DT PROC)

(DS TASK GLOBAL.EXEC)
(DS TASK CLOCK)

(DSV ITERATION I)

(DSV ITERATION J)

(DSV ITERATION J1)

(DSV SUBFRAMETIME T)

(DSV SUBFRAMETIME TT)

(DSV INTERVAL II)

(DSV PROC P)

(DSV PROC QQ)

(DSV PROC R)

(DSV (PAIR.OF DATA TASK)
V.

(DSV (SET.OF (PAIR.OF CATA TASK))
V.INPUTS)

(DSV (SET.OF (PAIR.OF DATA PROC))
V.BAG)

(DS REALTIME EPSILON)

(DS REALTTME LAMBLA)

(DSV SL.. RAMETIME T1)

(DSV SUBFRAMETIME T2)

(DS INTERVAL OF (ITERATION TASK))

(DS INTERVAL DW.OF (ITERATION TASK))

(DS INTERVAL DW.FOR.TO.OF (TASK ITERATION TASK))

(DS ITERATION TO.OF (TASK ITERATION TASK))

(DS TASK ERROR.REPORTER (PROC))

(DSV SUBFRAMETIME T.SUB)
(DD SUBFRAMETIME SUB.INCR (T.SUB) (PLUS T.SUB 1))

(DD Ui GAMETT:<. . JB.DECR (T.SUB) (DIFFERENCE T.SUB 1))

(DS TASK IC.ERROR.REPORTER (PROC))
(DS (SET.OF PROC) SAFE (SUBFRAMETIME))
(DS (SET.OF PROC)

SAFE.FOR

(INTERVAL))
(DS (SET.OF PRO.,

CONFIGURATION

(DATA))
(DS BOOL TASK.SAFE (TASK ITERATION))
(DS (SET.QOF PROC)

POLL.FOR.OF

v vt vatod v 2o el L el

B G A

[ikie e

(DS

(DS
(DS
(DS

(DS
(DS
(DS

(DA

(DA

(DS
(DS
(DS
(DS

(28
(DS
(DS
(DS
(DS
(DS
(DS

(ITERATION TASK))
(SET.OF DATA)

ON

(TASK ITERATION PROC))

DATA ON.IN (TASK ITERATION PROC PROC))
DATA IN .TASK ITERATION PROC))

(SET.OF DATA)

RESULT

(TASK ITERATION))

i i e

bt e b

(SET.OF (PAIR.OF DATA TASK)) V.INPUTS.A2 (ITERATION TASK))
DATA APPLY (FUNCTION.TYPE (SET.OF (PAIR.OF DATA TASK))))
FUNCTION.TYPE FUNCTION (TASK))

s g b

DATA.SIZE.IS.SEQ.LENGTH
(AND
(EQUAL (SEQ.LENGTH (IN K I QQ)) (RESULT.SIZE K))
(EQUAL (SEQ.LENGTH (APPLY (FUNCTION K) (V.INPUTS.A2 I K)))
(RESULT.SIZE K))
(EQUAL (SEQ.LENGTH (BOTTOM1 K)) (RESULT.SIZE K))
(EQUAL (SEQ.LENGTH (ON.IN K I P QQ)) (RESULT.SIZE K))))

BT CU VS D S

RESULT.SIZE.GREATER.THAN.1
(GREATEREQP (RESULT.SIZE K) 1))

BOOL IC (TASK))

BOOL ON.DURING (TASK ITERATION))
BOOL SSF (TASK TASK))

(SET.OF TASK)

INPUTS

(TASK))

REALTIME REAL.TIME (SUBFRAMETIME))

BOOL REPORTS (PROC PROC ITERATION TASK))
DATA REPORTVAL (PROC PROC ITERATION TASK))
BOOL ON.DURING (TASK ITERATION))

ITERATION TO.OF (TASK ITERATION TASK))
BOOL TASK.SAFE (TASK ITERATION))

(SET.OF DATA)

RESULT

(TASK ITERATION))

(DSV DATA V.CARD)
(DSV DATA V.CARD1)

(DSV (SET.OF TYPE1)

51)

(DSV (SET.OF TYPE1)

s2)

(DSV DATA V2)
(DSV DATA V3)
(DSV DATA Vi)
(DSV (PAIR.OF DATA PROC)

V.P)

R A S AR ke i S e o il R —

45

(DS (SET.OF (PAIR.OF DATAVAL PROC)) D.BAG.L10 (TASK ITERATION PROC NAT))

LR Can

(DS BOOL IC.TASK.SAFE (TASK ITERATION))
(DS BOOL IC.TASK.SAFE (TASK ITERATION))
(DD ITERATION DECR(I)

(DIFFERENCE I 1))
(DD ITERATION INCR (I)

(IPLUS 1 I))

(DA RP.AV.1 (LESSP (SUB.INCR (BEGIN (OF I K)))
(END (OF I K))))

(CA RP.A1.,2 (LESSEQP (END (OF I K)) :

(BEGIN (OF (INCR I) 3

R T g T T T g

K))) 4
(DA RP,A2 (IMPLIES (AND (MEMBER P (SAFE,FOR (OF I K))) %
(MEMBER QQ (SAFE.FOR (OF I K)))) 1
(SINGLETON (ON K I P)
(ON.IN K I P QQ))))
(DA RP,A7 (AND (EQUAL (CARD (INPUTS (ERROR.REPORTER P)))
9)
(SINGLETON (INPUTS (IC.ERROR.REPORTER P))
(ERROR.REPORTER P))
(IC (IC.ERROR,.REPORTER P,,
(SINGLETON (POLL.FOR.OF I (ERROR.REPORTER P))

T R sy e

Sl

E
5
3
v

P)]

(EQUAL I (TO.OF (IC.ERROR.REPORTER P) ;
g I E
: (ERROR.REPORTER P))))) .]
E: (DA RP,A8 (AND (MEMBER (IC.ERROR.REPORTER P) |
£ (INPUTS (GLOBAL.EXEC)))
E (LESSP (BEGIN (OF I (GLOBAL.EXEC)))
g (BEGIN (OF I (IC.ERROR.REPORTER QQ))))
: (LESSP (BEGIN (OF I (IC.ERROR.REPORTER QQ)))
L (BEGIN (OF (INCR I)
S (GLOBAL.EXEC))))))
3 (DA RP.A9 (AND (SUBSET (CONFIGURATION (SELECT (RESULT (GLOBAL.EXEC) é
3 DN f
i (CONFIGURATION (SELECT (RESULT (GLOBAL.EXEC) é
% (DECR I))))) 3
; (IMPLIES (LESSP (END (OF I (GLOBAL.EXEC))) :
1 (BEGIN (OF J K)))
3 (SUBSET (POLL.FOR.OF J K)
3 (CONF IGURATION (SELECT (RESULT (GLOBAL.EXEC) _
- DN g
i (DA RP.D2.1 (EQUAL (BEGIN (DW.FOR.TO.OF L I K)) i
? (IF (MEMBER L (INPUTS K)) 1
SN (BEGIN (OF (TO.OF L I K) {
: L)) |

46

(BEGIN (OF I K)))))

(DA RP,D2.2 (EQUAL (END (DW.FOR.TO.OF L I X))
(END (OF I K))))

(DA RP.D3.1 (NOT (LESSP (BEGIN (DW.FOR.TO.OF L I K))
(BEGIN (DW.OF I K)))))

(DA RP.D3.3 (EQUAL (END (DW,OF I K))
(END (OF I K))))

(DA RP.DT (IFF (ON.DURING K I)
(GREA1ERP (CARD (POLL.FOR.OF I K))
0)))

(DSV (PAIR.OF DATAVAL PROC) D.P)
(DSV (SET.QF (PAIR.OF DATAVAL PROC)) D.BAG)
(DS (SET.OF (PAIR.OF DATAVAL PROC)) D.BAG.D4 (TASK ITERATION PROC NAT))

E
E
EEL,
{-;_
-
E
3
£
b
%
E
£
2

(DA RP.DUA
(IFF (MEMBER D.P (D.BAG.D4 K I QQ Y))
(EXISTS P (AND (EQUAL (SEQ.ELEM (ON.IN K I PQQ) Y) 3
(VALUE D.P)) i
(EQUAL P (SOURCE D.P))
(MEMBER P (POLL.FOR.OF I K))))))

ot o2 i a

(DA RP.D4 (IMPLIES
(AND
- (MEMBER QQ (SAFE.FOR (OF I K)))
(LESSEQP 1 Y)
(LESSEQP Y (RESULT.SIZE K)))
(EQUAL (SEQ.ELEM (IN K I QQ) Y)
(MAJORITY (D.BAG.DAK I QQ Y)))))

T T T TR TR TR L

3
:
£

ootk ol a0 N ALt St s ok e

' (DS (SET.OF (PAIR.OF DATA TASK)) V.INPUTS.A3 (TASK ITERATION PROC))
: (DA RP.A3A

; (IFF (MEMBER V.T (V.INPUTS.A3 K I P))

3 (AND (MEMBER (SOURCE V.T)

E (INPUTS K))

v (EQUAL (VALUE V.T)

E (IN (SOURCE V.T)

5 (TO.OF (SOURCE V.T)

3 IK)

PN

Whae 2 koA il L0 e k23 s 2]

(DA RP.A3 (IMPLIES

(MEMBER P (INTERSECTION (POLL.FOR.OF I K)
3 (SAFE.FOR (DW.OF I K))))
3 (SINGLETON (ON K I P)

(APPLY (rUNCTION K) (V.INPUTS.A3 K I P)))))

(DA RP.D1
(AND (IMPLIES (AND (MEMBER L (INPUTS K))

[T— R TR TR NI PRI ST P e 0 FRIC R TR TS S

47

f (NOT (SSF L K)))
4 (AND (NOT (LESSP (BEGIN (OF I K))
1 (END (OF (TO.OF L I X)
3 L))
(LESSP (BEGIN (OF I K))
(END (OF (INCR (TO.OF L I X))
LN
(IMPLIES (AND (MEMBER L (INPUTS K))
(SSF L X))
(EQUAL (END (OF (TO.OF L I K)
L))
(SUB,INCR (BLJGIN (OF I K)))))))

(DA IO.D
(AND (IMPLIES (AND (MEMBER L (INPUTS K))
(NOT (SSF L K)))
(AND (NOT (LESSP (BEGIN (OF I K))
(END (OF (TO.OF L I K)
L))
(LESSP (BEGIN (OF I K))
(END (OF (INCR (TO.OF L I K))
LNN
(IMPLIES (AND (MEMBER L (INPUTS K))
(SSF L K))
(EQUAL (END (OF (TO.OF L I K)
L))
(SUB.INCR (BEGIN (OF I K)))))))

‘"'"r"f'!‘tlﬂm!"-4"'H‘¢:,1‘FW.IHW Bk LGOI daay i

IR TRy -

T i

e

g (DA RP.D11
: (IFF (MEMBER D.P (D.BAG.L10 K I QQ Y))
‘ (EXISTS P
: (AND
8 (MEMBER P (INTERSECTION (POLL.FOR.OF I K)
2 (SAFE.FOR (DW.OF I K))))
P (EQUAL (SEQ.ELEM (ON.IN K I P QQ) Y)
. (VALUE D.P))
(EQUAL P (SOURCE D.P))))))

2
: (DA RP.D9A (IFF (TASK.SAFE K I)

(OR (NOT (ON.DURING K I))
. (LESSP (CARD (POLL.FOR.OF I K))
: (TIMES 2
L (CARD (INTERSECTION (POLL.FOR.OF I K)
; (SAFE.FOR
, (DW.OF I K)))NIND)

(DA RP.A4 (IMPLIES (AND (IC K)
(IC.TASK,.SAFE K I))
(EQUAL (CARD (RESULT K I))
n»
(DA RP.Dg9B
(IFF
(IC,TASK.SAFE K I)

]

3

:, .

E» = AR see o e me aaeim e+ e rem s e o T
B T L S R e T e et e i ot MR L it dgol G gz e

ekl !vw Y

48

(OR (NOT (ON.DURING K I))
(AND (IC K)
(IMPLIES (MEMBER L (INPUTS X))
(LESSP (TIMES 2
(CARD (UNION (POLL.FOR.OF (TO.OF L I K)
L)
(POLL.FOR.OF I K))))
(TIMES 3
(CARD (INTERSECTION
(SAFE.FOR (DW.OF I K))
(UNION (POLL.FOR.OF (TO.OF L I K)
L)
(POLL.FOR.OF I X))))))IN)N

(DA RP.AS (IMPLIES (AND (IC K)
(MEMBER (SOURCE V.T)
(INPUTS K))
(SINGLETON V.INPUTS V.T)) ’
(AND (EQUAL (CARD (INPUTS K)) 3

1)
(IMPLIES (MEMBER L (INPUTS K)) :
(EQUAL 1 2
(CARD (POLL.FOR.OF (TO.OF L I K) ;

LN

(EQUAL (VALUE V.T)]
(APPLY (FUNCTION K) :
V.INPUTS))))) 3

(DA RP.A10 (IMPLIES (MEMBER P (SAFE.FOR (DW.OF J K)))
(IFF (AND (NOT (IC L))
(MEMBER L (INPUTS K))
(MEMBER QQ (POLL.FOR,OF (TO.OF L J K)

L)
(NOT (EQUAL (ON.IN L (TO.OF L J K) 3
Q P) 3
(XN L (TO.OF L J K)
P
(REPORTS P QQ (TO.OF L J K)

L

(DF RP.A11 (IMPLIES (GREATERP T1 T2)
(SUBSET (SAFE T1)
(SAFE T2))))

e O aat i ae i e o s

(DA RP.A6 (IMPLIES (AND (LESSP T2 T1)
(FORALL I (IMPLIES (LESSEQP
(END (OF I (CLOCK)))
T1)]
(TASK.SAFE (CLOCK) :
I
(AND (LESSP (DIFFERENCE (TIMES (DIFFERENCE T1 T2)

49

(DIFFERENCE 1 (LAMBDA)))
(EPSILON))
(DIFFERENCE (REAL.TIME T1)
(REAL.TIME T2)))

(LESSP (DIFFERENCE (REAL.TIME T1)
(REAL.TIME T2))
(PLUS (TIMES (DIFFERENCE TV T2)
(PLUS 1 (LAMBDA)))

(EPSILON))))))

T

(DA RP.D3.2 (EXISTS L (EQUAL (BEGIN (DW.FOR.TO.OF L I K))
(BEGIN (DW.OF I K)))))

(DA RP.D8 (IFF (REPORTS P QQ I K)
(EXISTS J
(AND (LESSEQP (BEGIN (OF I K))
(BEGIN (OF J (ERROR.REPORTER P))))
(LESSP (BEGIN (OF (DECR J)
(ERROR,REPORTER P))) 3
(END (OF (TO.OF L I K) E
L)) 3
(MEMBER (REPORTVAL P QQ I K)
(RESULT (ERROR,REPORTER P)
NN

T 'M""WWW?WWP‘P Erates

T I
vl bl bl it 2 g

A

T T

(DA RP.D10 (IFF (FORALL T (IMPLIES (AND (LESSEQP (BEGIN II)
™

g (LESSP T (END II)))
: ' (MEMBER P (3AFE T))))
(MEMBER P (SAFE.FOR II))))

NP

3 (DA RP.D6

? (IFF

S (MEMBER V (RESULT K I))

3 (EXISTS P (AND

‘ (MEMBER P (SAFE.FOR (OF I K)))
(EQUAL V (IN K I P))))))

YT P ST

dkeda e

,,
4

il

i ke s

The Lemmas

(QUOTE "The begining of a Data Window is earlier or at least equal to e
' begining of the Execution Window")
(DF RP.L1 (GREATEREQP (BEGIN (OF I K))
(BEGIN (DW.FOR,TO.OF L I K))))

(QUOTE "If a time is within the Execution Window, then it must be within
the Data Window")

.(DF RP.L2 (IMPLIES (AND (LESSEQP (BEGIN (OF K))_

T)
(LESSP T (END (OF I K))))
(AND (LESSEQP (BEGIN (DW.OF I K))
T)
(LESSP T (END (DW.OF I K))))))

(QUOTE "If a processor is Safe for the Data Window, it is Safe for the
Execution Window")
(DF RP,L3 (IMPLIES (MEMBER P (SAFE.FOR (DW.OF I K)))
(MEMBER P (SAFE.FOR (OF I K)))))

(QUOTE "If a task generates a singleton result value, then safe processors
will have that value in their In buffer")

(DF RP L4 (IMPLIES (AND (MEMBER L (INPUTS K))

(EQUAL 1 (CARD (RESULT L (TO.OF L' I K))))

(MEMBER P (SAFE.FOR (DW.OF I K))))

(IFF (MEMBER V (RESULT L (TO.OF L I K)))
(EQUAL V (IN L (TO.OF L I K)
PYN))

(QUOTE "If a task is on a processor that is Safe for its data window,
and if all ics input tasks are well behaved, the inputs to the
task will be same as in the IO Model")

(DF RP.LS5 (IMPLIES (AND

(FORALL L
(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K))))))
(MEMBER P (SAFE.FOR (DW.OF I K))))
(IFF (MEMBER V.T (V.INPUTS.A3 K I P))
(MEMBER V.T (V.INPUTS.A2 I K)))))

(QUOTE "As RP.L5")
(DF RP.L6 (IMPLIES
(AND
(FORALL L
(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K))))))
(MEMBER P (SAFE.FOR (DW.OF I K))))
(EQUAL (V.INPUTS.A2 I K) (V.INPUTS.A3 K I P))))

(QUOTE "If a processor is Safe for the Data Window of a task, it is Safe for

Lo SR SR s T) AR ok R L G

Ao R e A TS e s T

R e = e

the Execution Windows of each of that task's input tasks. Needed to
prove RP,L4m)
(DF° RP.L7 (IMPLIES (AND (MEMBER P (SAFE.FOR (DW.OF I K)))
(MEMBER L (INPUTS K)))
(MEMBER P (SAFE.FOR (OF (TO.OF L I K)
NN

(QUOTE "If a processor executes a task, and is Safe for the data wwindow of
that task, and if all the inputs to the task are well behaved, then
the the task output computed by that processor will be the result of
applying the task function to the correct task inputs")

(DF RP.L8 (IMPLIES

(AND
(MEMBER P (INTERSECTION (POLL.FOR.QF I K)
(SAFE.FOR (DW.OF I K))))
(FORALL L
(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K)))))))
(SINGLETON (ON K I P)
(APPLY (FUNCTION K)
(V.INPUTS.A2 I KD))))

(QUOTE ",.. and that output value will be the broadcast value received by
all processors that are Safe for the execution window of the task")
(DF RP.L9 (IMPLIES (AND (MEMBER P (INTERSECTION (POLL.FOR.OF I K)
(SAFE.FOR (DW.OF I K))))
(FORALL L
(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K))))))
(MEMBER QQ (SAFE.FOR (OF I K))))
(EQUAL (ON.IN K I P QQ)
(APPLY (FUNCTION K)
e , (V.INPUTS.A2 I K)))))
L (QUOTE "A result value received from a Safe processor is a member of the set
of all computer result values")
(DF RP.L11 (IMPLIES (AND (MEMBER QQ (SAFE.FOR (OF I K)))
(MEMBER D.P (D.BAG.L10 K I QQ Y)))
(MEMBER D.P (D.BAG.DU K I QQ Y))))

(DSV (PAIR,OF DATAVAL PROC) D.P.1)
(DS (SET.OF (PAIR.OF DATAVAL PROC)) D.BAG.L12
(TASK ITERATION PROC NAT))

- (QUOTE "Definition of D.BAG.L12 to be the set of correct values in the set of
result values to be voted on'")
(DA RP.L12A
(IFF
(MEMBER D.P.1 (D.BAG.L12 K I QQ Y))
(AND
(EQUAL

T TR

it

(SEQ.ELEM (APPLY (FUNCTION K) (V.INPUTS.A2 I K))
Y)

(VALUE D.P.1))

(MEMBER D,P.1 (D.BAG.D4 K I QQ Y)))))

(QUOTE "If a processor is Safe for the execution window of a task, and that
generates a singleton result value, then the result values received
from Safe processors by that processor will be correct values")

(DF RP.L12R (IMF.IES (AND (MEMBER QQ (SAFE.FOR (OF I K)))

(MEMBER D.P (D.BAG.L10 K I QQ Y))
(FORALL L
(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K)))))
(MEMBER D.P (D.BAG.L12 K I QQ Y))))

(QUOTE "as RP.L12R but as subset")
(DF RP.L13 (IMPLIES
(AND
(MEMBER QQ (SAFE.FOR (OF I K)))
(FORALL L
(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF LI K)))»)))
(SUBSET (D.BAG.L10 K I QQ Y) (D.BAG.L12 K I Q Y)))

(QUOTE "A time within the execution window of an input task to a task K
lies within the data window of task K. Used to prove RP.L7")
(DF RP,L2A (IMPLIES (AND (LESSEQP (BEGIN (OF {(TO.OF L I K)

L))
by
(LESSP T (END (OF (TO.OF L I K)
L

(MEMBER L (INPUTS K)))
(AND (LESSEQP (BEGIN (DW.OF T K))
Y] '
(LESSP T (END (DW.OF I K))))))

(QUOTE "If a task executes and is Safe, at least one processor must have been
Safe for its execution window")
(DF RP,L16 (IMPLIES (AND (ON.DURING K I)
(TASK.SAFE K I))
(GREATERP (CARD (SAFE.FOR (OF I K)))
0)))

(QUOTE "A Primary Lemma. If a task executes and is Safe, and if all its
inputs are well behaved, a Safe processor voting on the hroadcast
results will obtain the correct result value for that task")

(DF RP.L14 (IMPLIES (AND (TASK.SAFE K I)

{(ON.DURING K I)
(MEMBER QQ (SAFE.FOR (OF I K)))
(FORALL L

(IMPLIES

(MEMBER L (INPUTS K))

udw i

ot b

3

R ok o

TR A PR Py

T R

L3

¢
3

"

(EQUAL 1 (CARD (RESULT L (TO.OF L I K))))))
(LESSEQP 1Y)
(LESSEQP Y (RESULT.SIZE K)))
(EQUAL (SEQ.ELEM (APPLY (FUNCTION K)
(V.INPUTS.A2 I K)) Y)
(MAJORITY (D.BAG.D4 K I QQ ¥)))))

(QUOTE "... and will place that result value in its IN buffer")
(DF RP.L15 (IMPLIES (AND (TASK.SAFE K I)
(ON,.DURING K I)
(MEMBER QQ (SAFE.FOR (OF I K)))
(FORALL L
(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K)M)))))
(EQUAL (APPLY (FUNCTION K)
(V.INPUTS.A2 I K))
(IN K I QQ))))

(QUOTE "Almost there: If a task executes and is Safe, and all its inputs
are well behaved, its result will be the result of applying its
function to the zorrect inputst")

(DSV TASK L1)

(DF RP.L17

(IMPLIES (AND (TASK.SAFE K I)
(ON.DURING K I)
(FORALL L
(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K))))))
(FORALL L1
(IMPLIES
(MEMBER L1 (INPUTS K))
(EQUAL 1 (CARD (RESULT L1 (TO.OF L1 I K)))M))
(SINGLETON (RESULT X I)
(APPLY (FUNCTION k)
(V.INPUTS.A2 I K)))))

(QUOTE "The number of versions of a task's result available for voting on is

the number of processors executing that task")
(DF CARD.D.BAG,.DY4
(EQUAL (CARD (D.BAG.D4 K I QQ Y))
(CARD (POLL.FOR.OF I K))))

(QUOTE "The number of correct versions of a task's result is the number of
Safe processors executing that task")

(DF CARD.D.BAG.L10 (EQUAL (CARD (D,BAG.L10 K I QQ Y))
(CARD (INTERSECTION (POLL.FOR.OF I K)
(SAFE.FOR (DW.OF I K))))))

(DSV TASK L2)
(DF NECESSARY.EVIL
(IMPLIES
(FORALL L

1 et e e

viimirat R as vt

b s b

PR TR .
bl s s v e

B R SN S, S SRS e P . R S e AL

54

(IMPLIES £
(MEMBER L (INPUTS K)) :
(EQUAL 1 (CARD (RESULT L (TO.OF L I K)))))) ¥
(AND ;
(FORALL L1 3
(IMPLIES "
(MEMBER L1 (INPUTS K)) p
(EQUAL 1 (CARD (RESULT L1 (TO.OF L1 I K))))))]
(FORALL L2
(IMPLIES
(MEMBER L2 (INPUTS K))
(EQUAL 1 (CARD (RESULT L2 (TO.OF L2 I K)))))))))

el i

. Bl

(QUOTE "We now consider tasks that are rnot currently being exacuted")

wadabe

i Lt e e — .

Sl

(QUOTE "Tf a task is executed and safe, and has an input task that is not
being executed, a majority of “he result values for that not.on task
will be nulls")

(DF RP.L19 (IMPLIES (AND (MEMBER L (INPUTS K))

(ON.DURING K I)

(TASK.SAFE K I)

(NOT (ON.DURING L (TO.OF L I K)))
f (LESSEQP 1 Y)

1 (LESSEQP Y (RESULT.SIZE L)))

e (EQUAL (BOTTOMD)

3 - (MAJORITY (D.BAG.D4 L (TO.OF L I K)

QQ)N

Ry
wcheddit 118 il

i L R

e

[N VR TP S

(QUOTE "... and on a safe processor that null value will be placed in the
IN bufferh) E
(DF RP.L20 (IMPLIES (AND (MEMBER L (INPUTS K)) ;
o (ON.DURING K I) ;
(TASK.SAFE K I) :
(NOT (ON.DURING L (TO.OF L I K))) i
(MEMBER QQ (SAFE.FOR (OF (TO.OF L I K) L)))
(LESSEQP 1 Y)
s (LESSEQP Y (RESULT,SIZE L)))
; (EQUAL (SEQ.ELEM (BOTTOM1 L) Y)
E. : (SEQ.ELEM (IN L (TO.OF L I K) QQ) Y))))
£

(QUOTE "as RP.L20")
(DF RP.L21 (IMPLIES (AND (MEMBER L (INPUTS K))
(ON.DURING K I)
(TASK.SAFE K I)
(NOT (ON.DURING L (TO.OF L I K)))
(MEMBER QQ (SAFE.FOR (OF (TO.OF L I K) L))))
i (EQUAL (BOTTOM1 L)
3 ' (INL (TO.OF L I K) QQ))))

QUCLRYE R T NS T A S

el i

Giac] K

R)

it A A T b i ot L LT L s B A
2 w
. .

FROTEIE SN e e
[

R TR PTGl o e

(PR

(PR

(PR

(PR

(PR

(PR

DTN BT S SR M,

The Proof Commands with the required Instantiations

(RP.L1)
(RP.A1.1
((K L)
(I (TO.OF L IK)))
(RP.D1)
(RP.D2.1))

(RP.L2)
(RP.A1.1)
(RP.D3.3)
(RP.D3.1)
(RP.L1))

(RP.L2A)
(RP.A1.1)
(RP.D3.3)
(RP.D3.1)
(RP.D2.1)
(RP.D1))

(RP.L3)
(RP.L2
((T #*T:3)))
(RP.D10
((T *T:3)
(II (DW.OF I K))))
(RP.D10
((IT (OF I K))
(T D))))

(RP.LT)
(RP.D10
((T #T:1)
(II (OF (TO.OF L I K) L))))
(RP.D10
((T *T:1)
(II (DW.OF I K))))
(RP.L2A
((T *T:1))))

(RP.L16)
(CARD. INTERSECTION
((S1 (SAFE.FOR (DW.OF I K)))
(S (POLL.FOR.OF I K))))
(CARD.SUBSET
((S52 (SAFE.FOR (OF I K)))
(81 (SAFE.FOR (DW.OF I K)))))
(SUBSET
((S2 (SAFE,FOR (OF I X)))
(X #X:3)
(S1 (SAFE,FOR (DW.OF I K)))))

N LTI TR e

R

P
M

(RP.L3

((P *X:3)))
(RP.D9A)
(RP.D7))

(PR (RP,LY4)
(RP.LT)
(CARD. 2
((X (IN L (TO.OF L I K) P))
(X1 V)
(S (RESULT L (TO.OF L I K)))))
(RP.D6
((I (TO.OF L I K))
(K L)
(V (IN L (TO.OF L I K) P))))
(RP.D6
((I (TO.OF L I K))
(K L))))

(PR (RP.LS
((L (SQURCE V.T))))
(RP.A3A)
(I0.A2A)
(RP. LY
((V (VALUE V.T))
(L (SOURCE V.T)))))

(PR (RP.L6
((L *L:2)))
(SETEQUALITY
((S2 (V.INPUTS.A3 K I P))
(51 (V.INPUTS.A2 I K))
(X #X:1)))
(RP.LS
((V.T #:1))))

(PR (RP.LS

(CL #*L:2)))

(INTERSECT
((S1 (SAFE.FOR (DW.OF I K)))
(S (POLL.FOR.OF I K))
(X P)))

(RP.L6)

(RP.A3))

(PR (RP.L9

((L *L:5)))

(INTERSECT

((S1 (SAFE.FOR (DW.OF I X)))
(3 (POLL.FOR.OF I K))
(X P)))

(CARD. z

((X1 (ON.IN K I P QQ))

(X (APPLY (FUNCTION K) (V.INPUTS.A2 I K)))

f T s SRR e e W S S TG Al R O TR RS 0 AT R R 7

L fiablyy

Swaate A0t B oo

o il st

] (S (ON K I P))))
- (RP.L3)
(RP.A2)
(RP.L8))

#
;
!
i
iy kil o' o ol G, .

(PR (RP.L11)
(INTERSECT
((S1 (SAFE.FOR (DW.OF I K)))
(S (POLL.FOR.OF I K))
(X *P:2)))

b e -

. (RP.D11

» ((P D)))

1 (RP.DH4A

; ((P #P:2))))

(PR (RP.L12R

((L #L:3)))
(RP.L12A
((D.P.1 D.P)))
(RP.L11)
(RP.L9

| ((P #P:4)))

: (RP.D1
((P D))

(PR (RP.L13
((L #*L:2))) i
(SUBSET ;
((S2 (D.BAG.L12 K I QQ Y))
(X %X:1)
(S1 (D.BAG.L1I0OK I QYN
(RP.L12R

Lhith)

(MAJ.1

((T1.V (SEQ.ELEM (APPLY (FUNCTION K) (V.INPUTS.A2 I K)) Y))
(M.BAG.1 (D.BAG.L12 K I QQ Y))

o (M.BAG (D.BAG.D4 K I QQ Y))))

b (RP.L12A

g ((D.P.1 W1,V2:6))))

P ((D.P #X:1))))

: t

5,, : (PR (RP.L14

1 ((L *.:1)))

: (RP,L13)

{ (RP.D9A)

L. (CARD,D.BAG. D4)

E (CARD.D.BAG.L10)

1 (CARD.SUBSET

; ((S2 (D.BAG.L12 K I QQ Y))
‘ (S1 (D.BAG.L10 K I QQ Y))))

(PR (RP.L15
£ ((L *L:1)))
. (RP.L14

((Y #Y:3)))

cidh il

I

el il o
¢

T e

LRI

(PR

(PR

(PR

(PR

(RP.DY4

((Y #Y:3)))
(DATA.EQUALITY

(Vv (INKIQ))

(Y D)

(V1 (APPLY (FUNCTION K) (V.INPUTS.A2 I K)))))
(DATA,SIZE.IS.SEQ.LENGTH)
(RESULT.SIZE.GREATER.THAN.1)))

(RP.LT
((L ®L:6)
1 %:7)))
(CARD,.3
((V.CARD.3 (APPLY (FUNCTION K) (V.INPUTS.A2 I K)))
(S (RESULT K I))))
(RP.L16)
(CARD. 4
((S (SAFE.FOR (OF I K)))))
(RP.D6
((P #X:3)
(V (APPLY (FUNCTION K) (V.INPUTS.A2 I K)))))
(RP.D6
((V #:1)
(P D))
(RP.L15
((QQ *X:3)))
(RP.L15
((QQ *P:5))))

(I0.A2

((L #*L:2)))
(RP.LIT)
(NECESSARY.EVIL

((L1 #L:1)

(L2 *L1:1))))

(RP.L18)

(CARD. 4

((S (SAFE.FOR (DW.OF I K)))))

(RP.L7

((P (®X.CARD.Y4 (SAFE.FOR (DW.OF I K))))))
(CARD. INTERSECTION

((S (POLL.FOR.OF I K))

(S1 (SAFE.FOR (DW.OF I K)))))

(RP.DYA)

(RP.D7))

(RP.L19)

(MAJ.2

((M.BAG (D.BAG.D4 L (TO.OF L I K) QQ Y))
(T2.V D1:2)))

(BOTTCM, EQUALITY)

(CARD,.D.BAG.DY

SRR EUALS S\t N R SRR, Pty ER T S SOTE: 3 0 5 TR g AP: e Py -

3

A A Pk

At Fe b o 3 R S 4 21 R

Qi)

Layidl)

- TR

T H AT TR [

(K L)
(I (TO.OF L I K))))
(CARD.6
((s (POLL.FOR.OF (TO.OF L I K) L))))
(RP.DT
(K L)
(I (TO.OF L I K)))))

(PR (RP.L20)
(RP.L19)
(DATA.BOTTOM
((K L)))
(DATA .EQUALITY
((V (IN L (TO.OF L I K) QQ))
(V1 (BOTTOM1 L))))
(RP.D4
((K L)
(I (TO.OF L I K)))))

(PR (RP.L21)
(RP.L20
((Y *Y:2)))
(DATA.EQUALITY
((V (IN L (TO.OF L I K) QQ))
(Y D)
(V1 (BOTTOM? L))))
(DATA.SIZE.IS.SEQ.LENGTH
(KL
(I (TO.OF L I K)))))

(PR (I0.A5)
(RP.D9A
((X L)
(L (TO.OF L I K))))
(RP.L21 3
((QQ *X:9)))
(RP.L18)
(RP.L21
((QQ *P:6))) 7
(RP.D6 E
((K L) i
(I (TO.OF L I K))]
(V (BOTTOM1 L)) 2
(P '#X:9)))
(RP.D6
((K L)
(I (TO.OF L I K))
(P D)
(V. #:ON
(CARD.3
((V.CARD.3 (BOTTOM1 L))
(S (RESULT L (TO.OF LI K)))))
(RP.L21

T PR P Y PN

IR AN PN IO e e s by gy

v

IR AR e

PR

(il L e v

[adaote - Cia O]

T R Ty

((QQ *X:9)))

(CARD. 4

((S (SAFE.FOR (DW.OF I K))¥))
(RP.LT

((P #X:9)))

(CARD. INTERSECTION

((S (POLL.FOR.OF I K))

(S1 (SAFE.FOR (DW,.OF I KON

(RP.D9A)

(RP.DT))

e e bR

s ik KT i i ooy e R i AT ST ORI D ot PR

Some Completeness Results for a Class of Inequality Provers
by

1 : W. W. Bledsoe, Robert Neveln and Robert Shostak

Abstract. A modified resolution procedure, RCF, which uses a restricted form of
inequality chaining and variable elimination is proved to be complete, for first
order logic. RCF allows chaining only on terms of the form f(tl,..., tn) where

f 1is an uninstantiated function symbol and n > 1. (E.g., we never chain on

RtAbl laniC o adhi e .ttt i

variables.) Other results are given. A prover using RCS+, an extension of RCF,
has been implemented and used to prove several moderately difficult inequality

theorems, not proved earlier by general purpose automatic provers.

B sy

T LTI R T T
H

IEREHF SN L SR TR s

TR

i
&
;

Pty _uathi St S

SR OB R EEARS.

1. Introduction

One of the most effective procedures used in our inequality prover‘lll‘is
that of varisble elimination, whereby a variable which is "eligible" (see below)

in a clause, can be eliminated from that clause. For example, the clause
1) adxVxLdbdbVegd
can be replaced by the clause

a") atdbvegd

by elimination of the variable x (assuming that x does not occur in a,b,c, or d).

Also, the variable x (which does not occur in a,b, or ¢) can be eliminated from

- the clause

Q) . atxVbge

to produce the clause

A
N

2" b

In general, the variable x (which does not occur in a5 bj‘ or E) can be

eliminated from the clausge

n m
(Valf-xv qutijr.)
{=1 i=1

(RIS TNER T

0 M i e e et Eer SRt e

LIRS NP R DU

i ke

T N T TP TR T T e T

=.
L
3
b
A

bl i Sl Lol e e e)

T AP R MU SRR 41 i 5

37 TR T I s TR T

.

- ables can be eliminated.

to produce

n m ¢
(V Va, ¢b,VE) .
ju1 gu1 + d

A variable is eligible in a clause if it does not occur within the arguments

of an uninstantiated function aymbol. Thus x is eligible in (1) but not in 3).
3) atxVvxebVE)<e,

because it occurs as an argument of the uninstantiated function symbol £. The

term f(x) is called a shielding term because it "shields" the variable x,

thereby preventing it from being eligible imn (3).

The principal objective of the inequality prover [1] is to remove such shield-

" T
U ot . b o, el el L

ing terms, by inequality "chaining" and other procedures (see below), so that vari-

i

The clause

R= (agcVE VEz)c

1

is said to be a chain-resolvent of clauses

LTI R T COPO R AU P AR

and

= [
CZ (bSCVEZ)’

if o 1is the Mgu of (b,b'}. We also allow "self-chaining" whereby Eo is . E

inferred from (b < b' VvV E).

R A% R

3

FRE I ARE

MG e e e

~help control proof search tree.

64

We will designate by RC (“'resolution chaining') a procedure which only uses
chaining (as described above) and factoring. RC was shown to be completg by Slagle [2; i
(See also Lemma 4, Section 3.) Unfortunately RC alone is not very powerful as a :
prover. 1In order to strengthen RC, we have added VE (variable elimination, as

descr.ped above), and have imposed restrictioms on the chaining process, which

Two such procedures are RCF and RCS, which are described as follows. Both

RCF and RCS use VE, and both restrict chaining as follows: Let

R=(ag<cVE VEz)c

1

be the chain resolvent of

C1 = (agbvVv El) and C2 = (b'<cV E2) ,

3
1

where ¢ = Mgu(b,b'). We accept R as an RCF chain resolvent if

(1) all of a,b,b',c are ground termc (and hence b=b'), or

O I T R)

(2) b and b' are both of the form f(tl,..., tn) where

f 1s an uninstantiated function symbol, and n > 1. e

.

And we accept R as an RCS chain resolvent, if additionally, in case (2), either b or:

tan

e

is non-éround, i.e., efther b or b' 1is a shielding term.

RS

Other 1estrictions on RC include RCM and RC+. RM uses "multiple cuts",

where, for example, two clauses

C1 = (a<cVvbgeyv El)
and

C2 = (e<dVecgeVE)

Z

| §
|

MIERS L b i St S
.

g i L LR b R 24

65

are chained, in one step, on both ¢'s in C, and both e¢'s in C

1 2

(angagengdvbg_eVEIVEz)

RC+ permits literals of the form

where the a, and b, are traditional terms (with no occurrence of +). Two

i]

such literals are chained by cancelling like terms (after unificatiomn). For

example,

f(x) + a < h(x)
and

b < f(e)
_are RC+ chained to obtain

b +a<h() .

By combining these restrictions we obtain the following diagram

FCF+
RCF RCS RCS+
RC
\ RCM —— RCMF RCMS RCMS+

\ RCMF+

where more restrictive (stronger) procedures are shown to the right.

to obtain

Y R R YRR L AT PR S

R e L STRIS

gy

NP Y

1
i

by o] A SRR e T S

PR

It is the purpose of this paper to prove that RCF, RCF+, RCM, RCMF, and RQMF+

are complete.

It is conjectured that RCS ils also complete, as well as RCS+, RCMS, and
RCMS+.

RCS+ is the procedure described in {1]. But RCF+, which is proved complete

here, 1is equally as strong ags RCS on the examples given in [l]. Since we allow

quantification and uninterpreted function symbols, we can encode all of first order

logic. For example, the atom P(x,y) can be written as

f(x,y) <0

where f 1is a new uninterpreted function symbol associated with P. Hence our

procedures RC, RCF, etc. are complete for all of first order logic.

In each of RCF, RCS, RCM, etc., it is required that variable elimination
(VE) be applied immediately when a variable becomes eligible in a clause C,

and that C be discarded and replaced by its VE=-resolvent.

The reader might prefer to skip to Section 3, page 19, and refer back

fo Section 2 as needed.

e AR e Sl

i ol g it d
BT RN W RETPITS (WORAT ERESE L et

2. Definitions and Logical Basis

E 2.1. Axioms for total (linear) order: T

1. x4 x Anti-reflexive
E 2. x<y*rydx Anti-symmetry
E 3. x<yANy<z>*rx<z Transitivity

4be yE¢xANzdy>rzdx \

It is convenient (but not necessary) to also use the symbol " <", where

a<b is equivalent to b #£ a. Then axioms l-4 can be written

3 1. x<x
5 2. x<y>xa<y
3. xX<yAyYy<z¥»rx<z
i 4, x<yAy<z>rx<z
4
The axioms of 1 =4 are also called the inequality axioza.
P Definition. Let S < be the set of clauses corresponding tc the inequality axioms,
o
: . ‘S<=(xg.x,yg_xngy,ygx\/zs_ny<z,y<sz<ny§_z}.
o ' 2.2. Interpollation Axioms: I
1. vx 3y (¥< %)
k 2. any.(x<y)

3. Wxy x<y>*Jw x<w<y))

b, VWxyz x<zAy<z> Jwx<w<zAy<w<z))

e 2 SRR ALR T e e SR

& gt o

. i .
T - S - L PR TR PN K- -t 22 (L3 e, - N

Using, "<", these can be expanded to include

: vx Jy (v € %)
vx Jy (x<y)

vxy (x<y> Jv x<wgy)

IA

vxyz (x<zAy<z> Jw xgwgzhy<w<z))
Viyz (k< zAy<zr Jw @Sw<zAyLwL D))

More precisely, let I, the interpolation axiom, be the infinite set

I=(P. JneN JdmeN JL
(L is a function omn (0,1,...,n-1} x{0,1,...,n=1}

TRy AT T

G kg d

to (<, <) AP is

- n m
vEp Ry WYY (0 gy z
: n n i
; +3w(i/=\'1 j/:lxiLijw/\wLinj)))] ’ %
;? l wvhere W = {0,1,2,...]. F
Definition. Let S, be the (infinite) set of clauses corresponding to I, f.e., ‘
, S {“10(") < x, in(x) <x, x< wOI(x) y x< w('n(x) s Li
x<w, &y Vy<x, x g w, (x{y) Vy <x, i
X<, (Ky) VY <X, xS, (Ky) Vy<x,
wll(x’y) <yvy<x, wil(x,y) <yvy<x, (continued)

x < w21(x,y, 2) V 2z

IA
*®
<
N

A

<

]
IN
»
<
N
IA
<

w,l(x,y,z)<sz$_szgy,
E xs_wél(x,y,z)Vz<sz<y,
stél(xs)'sz) Vz<xVz<y,

w'n(x,y,z)ngz<sz<y,

x < w‘z'l(x,y, zZ) V
LR } L]

N
A
]
<
N
A

<

mm“m'mi“w”"wwr R

More precisely, let

P s;={C: JneN ImeN JkeN JreN JL

(L is a function on {0,1,...,n=-1}x(0,1,...,m-1} §

to (€,<})Ak<nA2<mA

n m
[C=(V V~ (xL,y)V ¥,)
oy g gy Y s
3 n m
2 Vea(V Va~ (x,L,yv,)Vy,L] .]
. p=1 1e1 L1373 £ %™k ;

AR N DA B G

The axioms for total order plus the interpolation axioms define the theory
- ' of dense linear order without endpoints [5]. This theory is decidable [6]. How-
ever, the class of formulas we are investigating contains quantification and un-

interpréted function symbols and hence is undecidabie (since any formula in first

order logic can be encoded).

GERD i aeteet di b el et SRR M

syw S
WINPT 7Y T

L3

L) T et S A o (RSN O S i EAS R L SR e 2 3

2.3. Equality Axioms

Definition. If S 1is a set of clauses then SE is the set of clauses.correspondi.ng

to the equality axioms for S. (See [8].)

2.4, Axioms for +

70

1. (x+y)+z<x+(y+2) Associativity
2. x+(y+z) < (x+y) +z Associativity
3. x+0< x \ Zero E
4, x < x+0 Zero "
5. x+y<y+x Commutativity |
6. x+y<x+z+y< z Cancellation
7. x +y<x>y<0 Cancellation
8., x+y<x+y<0 Cancellation ?
Definition. Let S+ be the clauses correyponding to the axioms for +,
S,={Gx+y)+z<x+(y+2), 3
x+(y+z2) < (x+y)+z,
x+ty < y+x ,
x+z< x+yVy<z, .
X+z<{ x+yVvVy<z, ;
x+0< x, é
x<x+0, Ji

x<x+yVvy<o,

x<x+yVy<o0}.

bl e i A ISR e o L S

2.5. Additional Definitions

Refinition. Let S be a set of inequality clauses.

A term t 1is said to be isolated in a literal L of S 4if t occurs in
L noﬁ within the arguments of any uninterpreted function symbol. t 13 isolated
in § 4if it is isolated in a literal of S.

Thus t 1is isolated in each of t < a, b< t+c, t < £(8).

A variable x 1is said to be eligible in a clause C (and in S) if it is
isolated in C and does not occur within the arguments of an uninstantiated

function symbol.

A term t 1is a shielding term of a clause C (and of S) if t has the form

f(t:1 > soos tn)

where f 1is an uninstantiated function symbol, and t 1is isolated ard not ground.

For example, x 1is eligible and f£(y) 1is a shielding term in the clause
x+tag<bVvi@y)gec.

t and t' are called half literals of the literals t<t' and t<t'.

Definition. A set S of inequality clauses is said to be:

RC-unsﬁtisfiable if (SlJS<) 1s unsatisfiable, and we write § Pﬁg [:].

Definition. If C 1is an inequality clause of the form

n m
V (a,L;x) Vv V (xL''b,) VE,
gm1 P U g

) i i

E

j?

RTHNR

AT ST e | TP AT
4
. ~

where x 1s a variable which does not ocecur in Lk or one of the a, or bj’

and for each 1{,], Li is either < or <, and L‘j 1s either < or <, then
n n

is called a VE-resolvent of C upon x, where Lij is < 4if both L:'I. and L‘j‘

are <, and Lij is < otherwise.

Note that x is eligible in C.

Definition. If C 1is an inequality clause of the form

n m
V(aL'x+a)v V(x+b b)) +E ,
17371
i=l j=1
where x 1s a variable which does not occur in E or one of the a, , ai s bj or
b:'l , and for each 1,j, L i’ L.“I € {(<,<), then
n n

R= V V (a,+bi L, b +a}) VE,
=1 =1 + 3 43

is called a VE+ Resclvent of C upon x, where Lij is < 1if both Li and

L" are, and < otherwise.

i

Definition. Lf Cl and Cz are inequality clauses of the form

_01. (al bVEl) ,
= t t
C, = (b'L'e VE, ,

where L' and L" are in (<,<), and b and b' are unifiable, then

R = (ALcVEl VEz)c

Ltk

E

i it

T P R T e s L T 17
; P i d

T

Lyt

S R

Ll

- T

73

is said to be a chain resolvent of C, and C, upon b and b', where

o =Mgu(b,b'}] and L is < if either of L' or L' is <, and < otherwise.
Definition. If C 1is an inequality clause of the form
C= (b<bd'VE)

and o =Mgu{b,b'}, then Eo is said to be self-chain resolvent of C upon

b_and b', Eg is also called a chain-resolvent of C.

Definition. If R 1is a chain resolvent of C1 and C2 upon b and b' or

a self-chain resolvent of C upon b and b', and

(1) b and b' are both ground, or

(2) b and b' both have the form
f(tl,lno,tn) 1

where f 1is an uninstantiated functiom symbol with n > 1,

then R 1is called an RCF-chain resolvent of C1 and C2

upon b and b', (or of C upon b and b'). E

Definition. If R 1s an RCF-chain resolvent of C1 and C2 upon b and b',

and either b or b' is a shielding term them R is called an RCS=-chain

resolvent of C1 and 02 uggn‘ b and b', (or of C upon b and b').

Definition. Let C1 and C2 be inequality clauses of the form

n
C, = (aL' Lb,) VE, ,
1 gm 1 1

m-
= t e
c, (jglbir. ¢) VE, , _ ;

ST TR R T T AT

E:'
3
-

T HPRTTe

74

wvhere L', L" e (€,<}, ke (1,...,n), 2 € {1,...,m)}, U-Mgu[bk,bk], and let

R= ((a+ Z Lec+ Z)v:-: V E)o ,
j- i=]
348 14k
where L 1is < 1if both L' and L" are, and < otherwise, and let R' be
obtained from R by algebraic simplification whereby like terms on opposite sides

of L are cancelled, (if all terms on one side of L are cancelled that side is

replaced by 0). Then R' 1is called an RC+ chain resolvent of C

; and C, upom

the literals bk and bé . Also (the self-chaining case) if
‘C = (Za L ij)vz,
i-l =1

wvhere L e (<, <)}, o=Mgula ,b,), then

R= ((Za L ij) E)o ,
=1 3=1
idk . jd2

(algebraically simplified), is called an RC+ chain resolvent of C wupomn a and

bz.

RCF+ and RCS+ chain resolvents are defined similarly, where the appropriate

restrictions are maintained on bk . bz and a -

We note that, in all of these cases, we do not chain-resolve two clauses unless

at least one term is cancelled. Thus we would not chain-resolve a+b < ¢ and
d+e< f toget a+b+d+e << c+f, unless c=d, c=e, f=a, or f=b. Also
when an intermediate resolvent R 1is obtained which is simplified to R' by

cancelling like terms, we keep only R' and discard R.

. .
T Dt T " T

. RO AT INE

iy

o

s UM B bt e i b e e

Shaciecia, ikt

A TR TR) TR

75

Definition. If C 1is a clause let

'€' 1if every literal of C has the predicate '<',
LE(C) =
'€' otherwise .

Definition. 1If Cl and C2 are inequallity clauses of the form

n
=]
(v aiLibi) V E

c)

1 {=1 1
m

02- (j:/lbijCj)VEZ ’

where Li , LY e {<, <], [b1 y ey bn . bi yeony bm] is unifiable with Mgu @, then

b
n n

R=((V Val b)VE VE)¢
ORI S S R L S

is called a multiple cut chain resolvent of Cl and C2 upon b1 R - T

n

o It is also called an RCM=-chain resolvent of

Bl ..., b!, where L

1]]

C, and C, . Also Self=Chain Resolvents are called multiple cut chain resolvents,

1 2

. 0r RMe=chain resolvents.

RCMF, RCMS, RCMF+, and ROMS+ chain resolvents are defined in a similar way.

Definition. Let C be an inequality clause,

o= ' "
C=¢'vDC (aliblv...Vanibn),naz,

where < is either < or <, and let o be a Mgu of {al < byseeny angbn],
i
with the restriction that

R T R AR T AT G T

-Refinition, If S 1s a set of inequality clauses, then

(1) if one of the ai's is a variable then no bi can be a

variable and o 1is a Mgu of (bl""’ bn], and

(2) 1if one of the bi's is a variable then no a, can be a

 §
variable and o0 is a Mgu of {al...., an].

Then ((a1 < bl) V D)o is called an RCS=factor of C, where < = LE(C').

Thus (a < £(a) V g(a) < ¢) 1is an RCS=factor of (a < £(x) V x < f(a) v

8(x) < ¢) but not of (a g f(a) Vx< £(a) V g(x) € ¢). That is, for RCS-factors,
we do not allow a variable to unify with a (different) term unless that unificationm

is forced by the unification of other nonevariable terms. E

Definition. An RC-factor is the same as an RCS-factor, except conditions (1) and

(2) are removed.

Definition.

FACT(S) = S U {€': 3 C € S(C' is an RC-factor of C)).

FACT-S(S) = S U {C':] C e S(C' is an RCS-factor of C)}.

RC(S) = (R:J C, e FACT(S) J C, e FACT(S) v

(R is a chain resolvent of C1 and CZ)] .

RC°(S) = S ,
R (s) = U RCEREP(S)) , neN,

RC () = U RC™(S) .
neN

:
§
H
£
L
3

b S Bl A

E
¥
o

3

B e e - S N i}
! O T TR T Y e, o) L e AP A LR R———

Definition. If [J ¢ RC(S) then we write

s F¥ 0

and say that there is an RC-deducting of O from S (or thare is an RC=refu=

tation of 8).

Definition. If S 1is a set of inequality clauses, then

VEGS) = (R: 3Ce S (R is a VE-Resolvent of C))
US~{Ce S: C has a VE-Resolvent],

VE+(S) 1s defined similarly,

RCF(S) = VE(S'), vhere
$'=(R:J C, ¢ FACT-S(s) J C, = FACT-S(s)

(R is a RCFe-chain resolventof C.1 and Cz)]

RCS(S) = VE(S8'), where
$'=(R:J C, e FACT-S(S; J C, e FACT-S ()

(R is a RCS-chain resolvent of Cl and Cz)]

etc., for RCF+(S), RCM(S), RCMF(S), RCMS(S), RCMF+(S), and (RMS+(S), ex‘cept

that FACT(S) is used in the definition of RCM(S) (only).

Note that variable elimination is applied immediately to a new resolvent R,

when it has an eligible variable, and R 1s discarded and replaced by its VE=

resolvent.

il sp g g

weideizile Lo

100 10 iz i

diedlatesr e e

hes R s

sisllod,

Definition.

RCFO(S) = §

RCF™1(5) = RCFT(S) U RCFREFT(S)) |

RCF (S) = U RCFV(S) .
ne N

Similarly for RCS™(S),...,RQMS+"(S).
Definition, If D € '_“\CFQ(S) we write

s 1RE

i

-

-

g
&

7
gﬂ" : :
i; .
£ Ly

=

and say that there is an RCF-deduction of C from S. Similarly for

T T T

{_RCF
S,CD

i
.

: . N S i e
-t S ' ib i

.

s chms+ 1

it

PRG-I o T AT IS PR W
< . .

Rt e R v B S e B U S
: .
.

~&

SN SR

4T

L

3

AN . L T B B e Riiaen Sir e B Ay O

3. Completeness Results

3.1, RCF Completeness

: Lemma 1. If S 1is a set of inequality clauses, ¢S 1is ground, S is not é
ground, and S8 has no eligible variables, them § contains a shielding term ¢ é
for which to # %0 for all isolated variables x in 8. %f
Proof. If S has no isolated variable we are finished. So let - 3
X be an isolated variable in clause Cl’ g:
3
fl(xl) be a shielding term in C1 (since X, is %t
e not eligible, by hypothesis) . é,
E ' Now if fl(xl)c # Vo for each isolated variable V in S, we are finished. So ?f
E suppose that : i
£, (x;)0 = x,0 for some isolated variable in clause C,, i
£,(x,) is a shielding tem in C,,
' X is an isolated variable in clause Cn i 3
i 3
: fn-l (xn_l)o =x0, ‘
; fn(xn) is a shielding term in Cn e ;;
. 1
s o 3
: il
E If this were the case then we would have 5%
fl(xl)/x2 , fz(xz)/xB,..., fn(xn)/xn+1"" ;
or) ?
? “ fnfn-lfn-Z "'fzfl(xl)/xn+1 .

T BT T R W 2 Er Sy v ko=, ey nsmy y rye

But ¢ has finite depth, so this process has to terminate. It can only terminate

if one of the x, 1s eligible, or 1if one of the fi(xi) is such that

i

_ fi(xi)c # xo
for any isolated variable x in S,
Q.E.D.

Lemma 2. If S 1is an RC-unsatisfiable gset of ground clauses, and ¢ 1is a
half literal of § (i.e.,, c<d, d<c, c<d, or d<c is in S, for some d),
then there is an RC~refutation ©» of S for which any chaining on terms other

than ¢ 1is done on clauses not containing c¢ (as a half literal).

(That is, all chainings on ¢ are done first, and then only clauses not cone

taining c are retained for the remainder of the refutation.)

Proof. The proof is by induction on the excess literal parameter k(S).*
case 1. k(S) = 51. Then [] € S and we are finished.

case 2. k() =0, - [¢s.

In this case the clauses of S are all units and by Lemma 2, Appenhix 1,

S contains a sequence of unit clauses

a, <a,‘: 82 < a3 HEUPIN :an_1 ? an: an $ al ,

T .
The excess literal parameter k(S) 4s defined as

k() = (T |c]) - s|
CeS

That i3 k(S) 1is the total number of occurrances of literals minus the number
of clauses in S.

S B 3 i i e e R DL A T B e T e

i
g
P

RPN L

2> Y 1

i e el o

T T T PP S RTINS

PV

o AU

AT L Y AN

iy

ST {TH pTT ENT GT AL

3

v "I-Tfﬂ“‘i"ﬂmf"“]“"-’“‘”""’”

€

k(Sz) < n, and hence by the induction hypothesis, there are RC-refutations @

where each < is either < or < and at least one of the < is <.,

If any of the a, are c's, then they can be chained upon first..

Case 3. (Induction Step)

Suppose k(S)=n, n > 1, and that for each set S' of ground clauses which

is RC-unsatisfiable and for which k(S) = n, there is an RC-refutation 90' of

§' - for which any chaining on a term other than ¢ is dome on clauses not con-

tainiﬁg ¢ (as a half literal).

Then S has at least one non=-unit clause C (since k(S) > 0). Let
c=C'VL
where C' 1is a clause and L is a unit clause. Let

so=s~[c],

= ! =
Sy sou(c], S, SOU(L] .
Then S1 and 52 sub some S and hence are RC-unsatisfiable. Also k(Sl) < n,

1
and D2 of S1 and S2 » respectively, for which any chaining on terms other

than ¢ 1is done on clauses not contain ec.

N
L)

Let D11 be the first part of 01 in which chaining is done only on ¢,
and 012 be the rest of D1 (the last part of Dl)' And let Si be a set of

resolutents produced by Dll which do not contain ¢ (as a half literal), but

such that 0., produces 0 from 5 -

dsuo bbb g e vishiahac o kol e i il ;

st W d iz

o1 b 0wl b, b

T T RO N Fan R

A0 b ah . 5

."”WWTFW“'N"WW‘ ?W""F""’" ane

(L

o) o o L MU SR

T [L T P T T T
'.. E

.

SRl ek S

T TR

O

by

Now build D out of Dll’ DZ’ and D &8 follows:

12

Let 001 be the same as Dll except that C' 1is replaced by C (and some 1
descendents of C' have the additional literal L), and let S(‘} be produced by
13014 from S (similarly as Si is produced by Dll from Sl)'

For each clause E in Si , Wwe have by Lemma 1, Appendix I, that either
E or (EVL) is in S(') . For each such (EV L) in S(') . let DE be the
same as 132 except that L is replaced by (E vV L) and some descendents of
(E V L) have additional literals from E. Thus DF. when applied to SOU[E Vv L}
will produce a clause E' which subsumes E. (By Lemma 1, Appendix I).

By applying such a deducting DE to each such (EV L) in S(') s Wwe obtain

from (S(')l.JSO) a set S; of clauses which subsumes S."L . And then we apply 012
to S; to obtain [J . .
1
D 1s made up of 901 » several of the DE 3, and 012 .

TR T

B A0 st o 1 LA Al R b b s el L

L A W oty e S

.._I_!” w.-, P TP —rTY kel v s s Rl 1 .

u”u

a

Since D congists of chainings only on ¢, since the first part of D

)

consists of chainings only on ¢ for each i, since the DE are domne in
i
chains only on clauses not containing ¢, it follows

Ey

parallel, and since ”12

that 9 has the desired properties.

Q.E.D.

A different proof of Lemma 2, due to Ken Kunen, is given in Appendix II.

Lemma 3. If S ie an RCeunsatisfiable set of clauses (S may contain more
than one variant of a particular clause), So 1s ground and RC-unsatisfiable,

t is a half literal of S,
@#=(t': t' is a half literal of S and t'c = to} ,
then there is an RC~deduction D' of a set S' from S for which

(1) each step in D' 1is a chaining on a member of @,
(2) S' contains no member of ¥ as a half literal,

(3) S'c (and therefore S') is RC-unsatisfiable.

gkl

il S

ac i et

fIE W HIER R TRV

.
T R RIVE SRR TR T

BN I L B P el T oy S it B g SO G R i sy

LY Ll

LER T Lok AL B b

b i

Proof. Apply Lemma 2 to Sog, with to for ¢, to obtain an RC-refutation
p" of So for which anv chaining on terms other than tog is done on clauses
not containing to (as a half literal).

Let S§" be the clauses obtained by D" on So where only chainings on to

are done, and let 86 be those clauses of S"USg not containing to (as a half

literal). Since any chaining on terms other than tc 4is done on clauses not
containing tg, it follows that D" is an RC~-refutation of 56.

D' 1is obtained from D" and S' from Sb by lifting. Conclusions (1),

(2) and (3) follow immediately.

Lemma 4. (RC-completeness Theorem)
If S 1s an RC-unsatisfiable set of clauses ther .aere is an RC-deduction

of I from S.

Proof. Let S' be an RC-unsatisfiable set of ground instances of S. Then by
Lemha 2 there is an RC-refutation O of S'., Lifting D glves the desired con=-

clusion.

Remark. The deductions provided by Lemmas 2 and 4 may employ tautologies, as the

following.example shows.

Example
1. b<a c<a d<ga
2. a<b e < a<d

w
L]
]

A
(-

e

e

WEERN K TG

T ey —

A SRR iy n B A T e e s IR, BTSRRI b AR, S

85

Notice that each chalning on S results in a tautology. To show that S

1s RC-unsatisfiable, the following deduction (using tautologies) is given.

7. c<a d<a a<c ac<d 1,2
. 8. c<a d<a b<c a<d 1,7
; 9. c<a d<a b<c b<cd 1,8
ih - 10. c<b d<a b<c b<d a<c a<d 9,2
El 11. c<b d<a b<c bB<d ax<d 9,10
% 12. ,e<d dga b<e b<d c<d 9,11
1 (13. . e<b d<b h<ec b<d e<d a<c a<d 12,2
5;: 4. c<b d<b b<c b<d c<d d<c a<d 12,13
15. c<b d<b b<ec b<d c<d d<c 12,14
16. c<d 3,6
17, d< e 5,4
18. 0. 15,4,6,3,5,17,16

l; o 'The ude of tautologies in RC proofs can be avoided if we use "multiple cuts"

g.
3
B
i
>
i
E-
4

whereby for example clauses 1 and 2 above produce in one step the clause 15, and

1ntermediate clauses 7-14 are not produced or retained. See [9].

s

. Lemma 5. If S 1is an RC-unsatisfiable set of clauses, So 1is ground and
' RC-unsatisiiable, C e S, x 1is a variable,
n m

C-(Vx<aiv Vbj<xVE)
=1 j=1

where x does not occur in ai,b or E, then

i

M e ! R R R (B, LG i U b i

U e bt il b L R O)

86

n n
S'=s~{Clu{vVv Vv bj < a; V E)
i=1 j=1
is RC-unsatisfiable, and S'0 1is RC-unsatisfiable. Also the shielding terms of

S' are those of S. (A similar theorem holds when some or all of the '<' in

C are replaced by '<', and appropriate changes are made in S§',)

Proof. Let

n m
C'=(V Vb, <a VE),
=1 j=1

S0 =5 ~{C) .

We must show that (SolJ{C'])c is unsatisfiable. We will show that any model for
(SOlJ(C'])c ;s a model for Sc==(SolJ[C})o.

Suppose M is a model for (SolJ{C'})c. If M 1is a model for Eg then
M is a model for Cc¢ and we are through. Otherwise M is a model for

(®

g < aic), for some 1i,].

3

If M 1is already defined on (xog < aio) and (b,0 < x0), then, since

3
(bjd < aio) is TRUE under M, 1t follows that either (xo < aid) or

it ity T i) el

12 1 Yt

(bjd < xo) is TRUE under M. If M 1is not defined on these two literals, we

arbitrarily define it to be TRUE on the first and FALSE on the second (or vice versa).

In either case M 1s a model for Co and is therefore a model for So.

Clearly the shielding terms of S' are those of S.

Ablet. b

Q.E.D.

Lemma 6. If S is an RC-unsatisfiable set of clarsea then there exists a

set S1 of variants of S and a substitution ¢ such that Slc is ground and

RC-unsatisfiable.

TR e ““mmf.’ﬂﬂi’wwf"?'ﬂtﬂw'wa"i P =g

SRR Lt o L LT 0 T

Lot

T T

Wbl Y

Theorem 1.

~refutation of S.

Proof. By Lemma 6 there is a set Sl

for which Sla is ground and RC-unsatisfiable.

eligible variable.

TR o ey

If S 1ia an RCeunsatisfiable set of cl_auses then there is an RCF=-

of variants of S and a substitution o

WLOG assume that S has no

Recursively define S2 . 83 ,e0s a8 follows:

If Si is ground, halt.

1f Si is ground, halt.
is not ground, use Lemma 1 to select a shielding term t from § N

1f S:L

for which ot#ogx for any isolated variable =x 1in Si’ and let

#={t': t'omtoc A t' is a half literal of Si} R

and use Lemma 3 to obtain an RC-deduction Di of a set Si+1 from Si for which

-each step in Di is a chaining on a member of ¥, S:;.-!-l containg no member of ¥,

' -
(as a half literal), and Si,.+1 and Si+1“ are RC-unsatisfiable. Let si;!-l 1+

We observe that variable elimination (i.e., the use of Lemma 4) on a set §'

does not increase the number of half literals in S'c. Furthermore, in applying

Lemma 3',‘ the half literals of Si+1 are a subset of those of Si , and to {s

a half literal of Sicr but not Si+10' So the use of Lemma 3 steadily decreases

must

the number of half literals in Sia. Therefore the sequence, s1 . 82 RPN
Let DG be the RCF-refutation

terminate in an RC-unsatisfiable ground set Sn .

of Sn.

=VE(S) ,).

ki Mook il) vtalibiin ity e

et dotubaliaman 1 com

TR IR

TTHTIRR?

88

Since the shielding term chosen by Lemma 1 is guch that
to ¥ xo

for any variable x, it follows that if to = t'c, then t and t' have the

form

f(tl soeny tn)

where f 13 an uninstantiated function symbol, and therefore each member of ¢
has this form. And since Di chains only on members of #® it follows that each
of the steps of Di produces an RCFeresolvent.

Since variable elimination steps are also RCF-steps it would appear that Di

i i+l i
of RCFn(S) we required that variable elimination be applied on a resolvent

and D! together form a RCF-deduction of § from S, . But in the definition

immediately when it is produced (if it has an eligible variable), so we cannot

follow D { by D;, but must intermingle the two, by reording the VE and RCF

steps. In particular, by [11], there is an RCF-deduction D; of Si+1 from
Si, for each i, i{=1l,n-1.
And by putting together the deductions
!l'.’D'Z‘"“’D;-l'DG’ .
we obtain an RCF-refutation of S.
G.E.D.

Theorem 2. (RCF Completeness Theorem)
Let

S be a set of inequality clauses,

s< be the set of clauses for the i.'nequality axioms,

—

SI be the set of clauses for the interpolation axioms,

Fomibn

e datasi b

I ATI LTI el TR e e e

IR e

I TR

o e

Proof. By definition (SLJSI)

an RCF=deduction O of

: recall that S,

e R e e

89

and suppose (S US<USI) is unsatisfiable. Then there is an RCF=deduction of

from S.

is RC-unsatisfiable. Thus by Theorem 1 there is

from (S USI)' But no clause of SI can be a part of

a (productive) step in 9, so O 1is an RCF-deduction of {1 from S.

To see why a clause of SI cannot be part of a (productive) step in 9,

is the set of clauses
n n
<w (X 5000y X 3 ¥y 500 ¥)V V vV (y, <x,)
% m 1 n’-’l m {1 4=l] i
n n
wm(xl,...,xn,yl,...,ym)gyzv Y/ V(yj<xi)
i=1 j§=1
k=1n; £=21,m; n>0; m>0,

together with similar clauses when < and < are interchanged.

Consider the case when n=1, m=1,

CI, = (x < wix,y) Vy<x)

1
CI, = (Wi, y) Sy Vy<x)

(we have dropped the subscript on w). Since the symbol 'w' occurs only in

1 and 012 and novhere else in S, it follows that no chaining on w(x,y)

with another clause in S 1is allowed in O,

CI

because it would have to match a

would prodnce the tautology

variable, And chaining CI1 with 012

x<yVy<x

kil id .

it s

bt 1A R B b e

which again cannot be used in any step of D since mnt_:ching on variables is forbidden.
Hence CI, and 012 are not used in a productive way in D and can be removed from
SlJSI + Similarly other members of sI can be removed.

Q.E.D.

Lenma 7. If

S 1is a set of inequality and equality clauges,

S< is the set of . 'auses for the inequality axioms,

S" 1s obtained from S by replacing each literal of

TSRS "'SMFW” Ty

the form (a=b) by (a<bAb < a) and reclausing

if necessary,

R AT
i

and S 1is unsatisfiable, then (S“US<) is RC-unsatisfiable.

oy

Proof. The following is a partial sketch of the proof for the ground case. Lifting g
- q

glves the general case.

BT i Ty

Suppose two clausea

Cl- (a-bVEl)

C, = (a $bV E,)

in S are resolved to obtain

R-(EIVEZ) .

1 2

If ¢, and C, have no other " =! symbol then ¢y is converted to the two clauses E
in S",)4

C, = (agbVE)

1.1

€= ®<avE)

A et G T e o AR ee amen o s ias . g dlemne e e mam oTe Fhe g o e

B ™

(R LAT L TEN PR PP IIRC <

91

and c2 is converted to

! m
C2 (a<be<aVEz).

\
RC=chaining °1.1 and Cl.2 with 02 gives R.

Theorem 3. Let

S be a set of inequality and equality clauses,

S < be the set of clauses for the inequality axioms,

SE be the set of clauses for the equality axioms

for the sets S,

SI be the set of clauses for the interpolation axioms,

S' be obtained from S USg by replacing each literal
a=b by (a<bAb<C<a) and reclausing if necessary,

and suppose (S US<USI) is E-unsatisfiable, and S nSI = f. Then there is an

RCF-deduction of [J from §°'.

Proof. 1In this proof we use the following notation: TFor any set U of inequality

and equality clauses,

UB is the set of clauses for the equality axioms for U,

U i3 obtained from U by replacing each literal of the form
- a=b by (a<bADbCKa) and reclausing if necessary.

Thus, in the above, §'=8§" Us‘é , and we must show that there ia an RCF-deduction

of 0 from S"US'E!'.

1
3

b Bl Bl e bt i

——

Th ST

(. el AL

ST

]
2
¢

E?:

£
-
E .
]

We first give an outline of the proof:

SUS<US

SUSS_USIUSEUSIE

l Lemma 7

n " "
S USSUSIUSEUSIE

Theorem 2

7

There is an RCF=-deduction of [J from (5" U S'E:. Us

See below.

Y

1 is E=unsatisfiable

l Reference [8]

(Note 8" =

(Hypothesis of Theorem 3)

is unsatisfiable

is RC~unsatisfiable

L
< SS, SI SI)

(with s" U Sg‘ u S'I'E for s)

1E

There is an RCF-deduction of [] from (s" u Sg) .

The last step follows because if 9 1is an RCF-deduction of O from

s" U SH Y S"

S‘I'E has only clauses of the form

= ' '
CIl x1<x1Vx1<x1V.

t
Vwm(xl,...,xn,yl,...,ym) 5_wm(x1,

(and similar clauses, see Section 2), and since the symbol

in s" U S}

E IE then we can omit from © those steps involving

"
It ° Because

1
..Vym<ymVym<ym

e XY YY)

“w " does not occur

g 0o RCF step can use CI unless CI is chained with itself.

LA
+ rth

N _‘_;)‘J;_ij:ti!ilwﬂwmihd.: Lt

LR Lt i

i

ECHRATD T R

1 e s

4 s

But such a chaining only produces a RCF-resolvent

1)]
Xy < x1 VooV ym < ym

Y wm(xl 3y ym) S wm(xl L IR | ym)

which can again only be used against members of Rcfm(SEE). So no interaction

with s" u SE is possible.

3.2, RCF+ Completeness
Lemma 9 (Ground unit Ri + Completemess). If S is an RC+ unsatisfiable set

of greund unit clauses, then thore is an RC+ deduction of 0" from s.

This follows essentially from a consistency criterion used in linear pro-

gramming. See [10]. Also see Lemma 3, Appendix I.

Ty T _‘"..!'.

S T P4 S

Lemma 10. If S is an RC+ unsatisfiable set of ground unit clauses, and ¢
* 3
is an isolated term of S, then there is an RC+ refutation D of S for which

any chaining on terms other than c¢ is done on clauses not containing c (as an

isolated term).

Proof, Use Lemma 9.

Lemma 11, (Like Lemma 2) If S 1s an RC+ unsatisfiable set of ground
clauses, and ¢ 1is an isolated term of S, then there is an RC+ refutation 0
of S for which any chaining on terms other than ¢ 1s done on clauses not

containing ¢ (as an isolated term).

Proof. The proof is by induction on the excess literal parameter k(S).
case 1. k(S) = 1. Then [Jes.

Case 2. k(8) =0, []¢s.

In this case the clauses of S are ground unit clauses, and the desired

rTaesult follows from Lemma 10.

Case 3. (Induction §tep) The proof of this case follows exﬁctly as the proof of
Case 3 in Lemma 2, except the expression "half literal" is replaced by "i;olated

term".

*
Recall that a term is isolated if it occurs not within the arguments of any
uningtantiated function symbol. E.g., t<a, t+ag<b, att+b<c, ete.

olugitdide gl d s

i ot odbarllobl

e s S e

kol il i i s b et s
- " DR . * : ¥ HEREN AL - -
, . i
My

Frosts

T SRR

gl Ly

Ratsac Wi

=TT e

Lemma 12, (Like Lemma 3) If S 1is an RC+ unpatisfiable set of clauses,

So 1s ground and RC+ unsatisfiable, t is an isolated term of §,

= {t': t is an isolated term of S and t'c=to)} ,

then there 1is an RC+ deduction D' of a set S' from S for which

(1) each step in D' 1is a chaining on a member of @,
(2) S' contains no member of #® (as an isolated term),

(3) S'c (and therefore S) is RC+ unsatisfiable,

Proof. Similar to that of Lemma 3.

Lemma 13. (Like Lemma 5) If S is an RC+ unsatisfiable set of clauses,
Ce8 x is an eligible variable in C, and R 1is a VE+ Resolvent of C upon

x, then S~{C} U (R} is RC+ unsatisfiable.
Proof. The proof is similar to that of Lemma 5.

.Theorem 4. If S 18 an RC+ unsatisfiable set of clauses then there is an RCF+

refutation of S.

Proof. Very much like that of Theorem 1.

u-l.&..h'x'llﬂ-imd”'d' il

4
Al ‘
ST U VR RN

ek s
e -t i s,

RN (A TR TN L T P R AT

Yy

T ey

cala el AR alS

T Ry

APPENDIX Theorem Prover Listing

The following is an excerpt from the Interlisp implementation of
the experimental theorem prover developed during the second year of
the project. The excerpt exhibits the main procedures in part of the

theorem prover that reduces propositional structure,

(PROVE
(LAMEDA (FORM)
(NEW.CONTEXT (AND.SIMP (LIST FORM)))))

(NEW,CONTEXT
(NLAMBDA (X)
(PROG ((SIGNATURE.ALIST SIGNATURE.ALIST)

(FIND,PTR.ALIST FIND.PTR.ALIST)
(USE.ALIST USE.ALIST)
(INEQUIST (APPEND INEQLIST))
(IF.ALIST IF.ALIST))

(RETURN (EVAL X)))))

(AND,SIMP
(LAMBDA (STACK SUBGOALS FAST.FLG) (% edited:
"19-Fab-81 21:02")
(PROG ((DEFER.POT (CONS NIL (AND SUBGOALS (APPEND SUBGOALS))))
EXP SINGLE ADD.ELEM NOQT,EXP)
TOP (while STACK
do
((SETQ EXP (CAR STACK))
(COND
((ATOM EXP)
(SELECTQ EXP
(TRUE (SETQ STACK (CDR STAZK)))
(FALSE (RETFROM (QUOTE NEW.CONTEXT)
(QUOTE "ALSE)))
(PROG2 (OR (ADD.EQ (LIST (QUOTE EQUAL)
(QUOTE TRUE)
EXP))
(SETQ SINGLE
(COND
(SINGLE (QUOTE FALSE))
(T EXP))))
(SETQ STACK (CDR STACK)))))
(T
(SELECTQ
(CAR EXP)
(NOT
(SETQ NOT.EXP (CADR EXP))
(COND
(CATOM NOT.EXP)
(SELEZTA
NOT.EXP
(TRUE (RETFROM (QUOTE NEW.CONTEXT)

j

s

aabbi

AL s)bl it v i

e A oy

e 1 i o bl satmdet, &

il aabihe. et

S T TR T T

NI i L S AT
7

Bt it o L S A

(QUOTE FALSE)))
(FALSE (SETQ STACK (CDR STACK)))
(PROG2 (OR (ADD.EQ (LIST (QUOTE EQUAL)
(QUOTE FALSE)
NOT.EXP))
(SETQ SINGLE
(COND
(SINGLE (QUOTE FALSE))
(T EXP))))
(SETQ STACK (CDR STACK)))})
(T
(SELECTQ
(CAR NOT.EXP;
(NOT (SETQ STACK (CONS (CADR NOT.EXP)
(CDR STACK))))

(AND :
(COND .
((CDR NOT.EXP) - 3
(RPLACD
DEFER.POT
(CONS
(CONS
(QUOTE OR) 1
(for ARG in (CDR NOT.EXP) 3
collect k
(LIST (QUOTE NOT)
ARG))) :
(CDR DEFER.POT))) 3
(SETQ STACK (CDR STACK))) ;
(T (RETFROM (QUOTE NEW.CONTEXT)
(QUOTE ' FALSE)))))
(Oh
(COND p
((CDR NOT.EXP) . 4
(SETQ STACK ;
(NCONC (for ARG 3
in (CDR NOT.EXP) 3
collect 4
(LIST (QUOTE NOT)
ARG))
(CDR STACK))))
(T (SETQ STACK (CDR STACK)))))
(IMPLIES
(SETQ STACK
(CONS (CADR NOT.EXP)
(CONS (LIST (QUOTE NOT)
(CADDR NOT.EXP))
(CDR STACK)))))

(IF _
(RPLACD ;
DEFER. POT
(CONS (LIST (QUOTE IF)
(CADR NOT.EXP)
(LIST (QUOTE NCT)

BRI L g L) A

AR At LR SN | TP Ry YA

AT itk e 7~ T i b et A B 47 e
ERtaiG ettt i U S

S T

(CADDR NOT.EXP))
(LIST (QUOTE NOT)
(CADDDR NOT.EXP)))
(CDR DEFER.POT)))
(SETQ STACK (CDR STACK)))
(IF.OBJ (SETQ IF.ALIST
(CONS (CADR NOT.EXP)
IF . ALIST))
(SETQ STACK
(CONS (LIST (QUOTE NOT)
(CADDR NOT.EXP))
: (CDR STACK))))
(IFF
(RPLACD
DEFER. POT
(CONS
(LIST (QUOTE OR)
(LIST (QUOTE AND)
(CADR NOT.EXP)
(LIST (QUOTE NOT)
(CADDR NOT.EXP)))
(LIST (QUOTE AND)
(CADDR NOT.EXP)
(LIST (QUOTE NOT)
(CADR NOT.EXP))))
(CDR DEFER.POT)))
(SETQ STACK (CDR STACK)))
(SELECTQ (SETQ ADD.ELEM (ADD.ELEM.REL
NOT.EXP T))
(NIL (SETQ STACK (CDR STACK))
(SETQ SINGLE
(COND
(SINGLE (QUOTE FALSE))
(T EXP))))
(T (SETQ STACK (CDR STACK)))
(SETQ STACK (CONS ADD,.ELEM
(CDR STACK))))))
))
(AND (SETQ STACK (APPEND (CDR EXP)
(CDR STACK))))
(OR (COND
((CDR EXP)
(RPLAC) DEFER.POT (CCNS EXP (CDR DEFER.POT)
)
(T (RETFROM (QUOTE NEW,CONTEXT)
(QUOTE FALSE))))
(SETQ STACK (CDR STACK)))
(IMPLIES (RPLACD
DEFER.POT
(CONS (LIST (QUOTE OR)
(LIST (QUOTE NOT)
(CADR EXP))
(CADDR EXP))
(CDR DEFER.POT)))

:ig
3
1
é
4

o bl

TN N RTVYY IS ST S CI NSRRI

99

(SETQ STACK (CDR STACK)))

(IF (RPLACD DEFER.POT (CONS EXP (CDR DEFER.POT))) :

(SETQ STACK (CDR STACK))) i
(IF.0BJ (SETQ IF.ALIST (CONS (CADR EXP)
IF .ALIST))

(SETQ STACK (CONS (CADDR EXP)
(CDR STACK))))

10 .i 0l b

P R

(IFF (SETQ STACK
(CON3 (LIST (QUOTE AND)
(LIST (QUOTE IMPLIES)

: (CADR EXP)
s (CADDR EXP)) E
§ (LIST (QUOTE IMPLIES) z
4

fdo o oo

) e
E T A

(CADDR EXP)
(CADR EXP)))
4 (CDR STACK))))
3 {SELECTQ (SETQ ADD.ELEM (ADD.ELEM.REL EXP)) -
F (NIL {SETQ SINGLE (COND N
_ (SINGLE (QUOTE FALSE)) i3
3 (T EXP))) i
(SETQ STACK (CDR STACK)))
(T (SETQ STACK (CDR STACK)))
(SETQ STACKX (CONS ADD'.ELEM (CDR STACK)))))

el L Sl

TR A KT S

‘ n»
(COND
((CDR DEFER.POT)
(FAST.ITERATE DEFER.POT)
(COND
(STACK (GO TOP))
(FAST .FLG)
((CDR DEFER.POT)
(SLOW.ITERATE DEFER.POT)
(COND _
(STACK (GO TOP)) ;
((CDDR DEFER,POT) 3
(SPLIT.ELECURSE (CDR DEFER,POT)) :
(RPLACD DEFER.POT) :
(AND STACK (GO TOP)))))))) :
(RETURN (COND !

(SINGLE (COND
((OR (EQ SINGLE (QUOTE FALSE))

(CDR DEFER.POT))
NIL)
(T SINGLE)))
((CDR DEFER.PQT)
(COND
(CCDDR DEFER.POT)

NIL)
(T (CADR DEFER.POT))))

(T (QUOTE TRUE)))))))

AR YR g
i oot e s L

R

Jn T) e

ol IR TR TR T et preen
. .

Ty

ac T L TRTRON

(FAST.ITERATE
(LAMBDA (DEFER.POT.PTR)
(while (CDR DEFER.POT.PTR) bind SIMP

mprTn
i i

T

T

o i

PR TR

E

i it il ot

L D

Rl

100

do (SELECTQ (SETQ SIMP (SELECTQ (CAADR DEFER.POT.PTR)
(OR (OR.SIMP (CADR DEFER.POT.PTR)
NIL T))
(IF (IF.SIMP (CADR DEFER.POT.PTR)

)
NIL))
(TRUE (RPLACD DEFER.POT.PTR (CDDR DEFER.POT.PTR)))
(FALSE (RETFROM (QUOTE NEW.CONTEXT)
(QUOTE FALSE)))
(NIL (SETQ DEFER.POT.PTR (CDR DEFER.POT.PTR)))
(PROGN (SETQ STACK (CONS SIMP STACK))
(RPLACD DEFER.POT.PTR (CDDR DEFER.PQOT.PTR)))))
))

(FAST.PROVE
(LAMBDA (FORM)
(NEW.CONTEXT (AND.SIMP (LIST FORM)
NIL T))))

(OR.SIMP
(LAMBDA (STACK SUBGOALS FAST.FLG)
(PROG (SIMP)
(SETQ STACK (for X in (CDR STACK) collect ‘ 3
(LIST (QUOTE NOT)

X))

(RETURN (SELECTQ (SETQ SIMP (NEW.CONTEXT (AND.SIMP STACK
SUBGOALS
FAST.FLG))) ;

(TRUE (QUOTE FALSE))
(FALSE (QUOTE TRUE)) ;
(NIL NIL) E
(LIST (QUOTE NOT)

SIMP))))))

L o il ot

(SLOW, ITERATE
(LAMBDA (DEFER.POT.PTR)
{while (CDR DEFER.POT.PTR) bind SIMP
do
(SELECTQ
(SETQ SIMP
(SELECTQ (CAADR DEFER.POT.PTR)
(OR (OR.SIMP (CADR DEFER.POT.PTR))) _
(IF (OR.SIMP (CAR (RPLACA (CDR DEFER.POT,.PTR)
(CCNVERT, IF.TO,.OR
(CADR DEFER.POT.PTR))))

R

o 2 Wt W b s ot o

))
NIL))
(TRUE (RPLACD DEFER.POT.PTR (CDDR DEFER.POT.PTR)))
(FALSE (RETFROM (QUUTE NEW.CONTEXT)
(QUOTE FALSE)))
(NIL (SETQ DEFER.POT.PTR (CDR DEFER.POT.PTR)))
(PROGN (SETQ STACK (CONS SIMP STACK))
(RPLACD DEFER.POT.PTR (CDDR DEFER.POT.PTR)))))))

ks e G AL o 100 v

E

E

~) j
N T i S P P

(SPLIT.RECURSE
(LAMBDA (GOALS)
(PROG (SINGLE SIMP)

g e wmwmv‘ww-nqw PRS- g

e

(RETURN (SELECTQ (for DISJUNCT in (CDAR GOALS)

do (SELECTQ (SETQ SIMP
(NEW,CONTEXT
(AND,.SIMP (LIST DISJUNCT)
(CDR GOALS))))
(NIL (RETURN (QUOTE NO,LUCK)))
(FALSE)
\ (TRUE (RETURN (QUOTE TRUE)))
’ (COND
(SINGLE
(RETURN (QUOTE NO.LUCK)))
(T (SETQ SINGLE SIMP)))))
(NO.LUCK (RETFROM (QUOTE NEW,CONTEXT)))
(TRUE)
(COND
(SINGLE (SETQ STACK (LIST SINGLE)))
(T (RETFROM (QUOTE NEW.CONTEXT)
(QUOTE FALSE)))))N))

